Some soils are exceptionally good for growing crops, and others are inherently unsuitable; most are in between. Many soils also have limitations, such as low organic matter content, texture extremes (coarse sand or heavy clay), poor drainage, or layers that restrict root growth. Iowa’s loess-derived prairie soils are naturally blessed with a combination of silt loam texture and high organic matter content. By every standard for assessing soil health, these soils—in their virgin state—would rate very high.
The way we care for, or nurture, a soil modifies its inherent nature. A good soil can be abused through years of poor management and turn into one with poor health, although it generally takes a lot of mistreatment to reach that point. On the other hand, an innately challenging soil may be very “unforgiving” of poor management and quickly become even worse. For example, a heavy clay loam soil can be easily compacted and turn into a dense mass. Both naturally good and poor soils can be productive if they are managed well. However, they will probably never reach parity, because some limitations simply cannot be completely overcome. The key idea is the same that we wish for our children—we want our soils to reach their fullest potential.
Table of Contents
- About the Authors
- Preface
- Introduction
- Healthy Soils
- Organic Matter: What It Is and Why It's So Important
- Amount of Organic Matter in Soils
- The Living Soil
- Soil Particles, Water, and Air
- Soil Degradation: Erosion, Compaction, and Contamination
- Nutrient Cycles and Flows
- Soil Health, Plant Health, and Pests
- Managing for High Quality Soils: Organic Matter, Soil Physical Condition, Nutrient Availability
- Cover Crops
- Crop Rotations
- Animal Manures for Increasing Organic Matter and Supplying Nutrients
- Making and Using Composts
- Reducing Erosion and Runoff
- Preventing and Lessening Compaction
- Reducing Tillage
- Managing Water: Irrigation and Drainage
- Nutrient Management: An Introduction
- Management of Nitrogen and Phosphorus
- Other Fertility Issues: Nutrients, CEC, Acidity, and Alkalinity
- Getting the Most From Routine Soil Tests
- Taking Soil Samples
- Accuracy of Recommendations Based on Soil Tests
- Sources of Confusion About Soil Tests
- Soil Testing for Nitrogen
- Soil Testing for P
- Testing Soils for Organic Matter
- Interpreting Soil Test Results
- Adjusting a Soil Test Recommendation
- Making Adjustments to Fertilizer Application Rates
- Managing Field Nutrient Variability
- The Basic Cation Saturation Ratio System
- Summary and Sources
- How Good Are Your Soils? Field and Laboratory Evaluation of Soil Health
- Putting It All Together
- Glossary
- Resources