
There is an additional dimension to plant-available water capacity of soils: The water in the soil may be available, but roots also need to be able to access it, along with the nutrients contained in the water. Consider the soil from the compacted surface horizon in figure 5.6 (left), which was penetrated only by a single corn root with few fine lateral rootlets. The soil volume held sufficient water, which was in principle available to the corn plant, but the roots were unable to penetrate most of the hard soil. The corn plant, therefore, could not obtain the moisture it needed. The corn roots on the right (figure 5.6) were able to fully explore the soil volume with many roots, fine laterals, and root hairs, allowing for better water and nutrient uptake.

Similarly, the depth of rooting can be limited by compaction. Figure 5.7 shows, on the right, corn roots from moldboard-plowed soil with a severe plow pan. The roots could not penetrate into the subsoil and were therefore limited to water and nutrients in the plow layer. The corn on the left was grown in soil that had been subsoiled, and the roots were able to reach about twice the depth. Subsoiling opened up more soil for root growth and, therefore, more usable water and nutrients. Thus, plant water availability is a result of both the soil’s water retention capacity (related to texture, aggregation, and organic matter) and potential rooting volume, which is influenced by compaction
.
Table of Contents
- About the Authors
- Preface
- Introduction
- Healthy Soils
- Organic Matter: What It Is and Why It's So Important
- Amount of Organic Matter in Soils
- The Living Soil
- Soil Particles, Water, and Air
- Soil Degradation: Erosion, Compaction, and Contamination
- Nutrient Cycles and Flows
- Soil Health, Plant Health, and Pests
- Managing for High Quality Soils: Organic Matter, Soil Physical Condition, Nutrient Availability
- Cover Crops
- Crop Rotations
- Animal Manures for Increasing Organic Matter and Supplying Nutrients
- Making and Using Composts
- Reducing Erosion and Runoff
- Preventing and Lessening Compaction
- Reducing Tillage
- Managing Water: Irrigation and Drainage
- Nutrient Management: An Introduction
- Management of Nitrogen and Phosphorus
- Other Fertility Issues: Nutrients, CEC, Acidity, and Alkalinity
- Getting the Most From Routine Soil Tests
- Taking Soil Samples
- Accuracy of Recommendations Based on Soil Tests
- Sources of Confusion About Soil Tests
- Soil Testing for Nitrogen
- Soil Testing for P
- Testing Soils for Organic Matter
- Interpreting Soil Test Results
- Adjusting a Soil Test Recommendation
- Making Adjustments to Fertilizer Application Rates
- Managing Field Nutrient Variability
- The Basic Cation Saturation Ratio System
- Summary and Sources
- How Good Are Your Soils? Field and Laboratory Evaluation of Soil Health
- Putting It All Together
- Glossary
- Resources