

One can't talk about agriculture in the Texas High Plains without including "water" in the same sentence. The Ogallala Aquifer, which has kept ag production humming for nearly a century, is running low. Agriculture in the Texas Panhandle and Southern Plains is adapting to decreased water availability.

For nearly two decades, researchers and producers across the Texas High Plains have been developing integrated crop/livestock production systems that address the growing need for water conservation, while keeping soils fertile, crop yields profitable, cattle production thriving, and surrounding communities viable.

Funded through nearly \$1.5 million in Southern SARE Research & Education, Large Systems, and Graduate Student grants, the results showcase long-term alternative production systems, and how those results are being translated into practical field production practices and sustainable agriculture applications.

This model of sustainable agroecosystems in the Texas High Plains is changing the face of agriculture in the region and helping to conserve water, improve soil health, boost ag profits and keep the High Plains region thriving for generations to come.

This bulletin highlights SSARE-funded work from 1997-2003 (**LS97-082**, Sustainable Crop/Livestock Systems in the Texas High Plains.)

Sustainable Crop/Livestock Systems in the Texas High Plains: Phase I

Introduction:

Crop and livestock production in the Texas High Plains generates over \$8.7 billion in annual revenues but has depended on irrigation with water from the Ogallala Aquifer. Once considered to be an inexhaustible resource, the aquifer is now known to be declining at a rate that has already left many wells dry and crop production increasingly vulnerable. The importance of crops, forages, and livestock to the Texas High Plains highlights the need to develop systems that enhance profitability, improve conservation of soil and water resources, and expand marketing opportunities for a more sustainable agricultural system.

In a Southern SARE-funded project (**LS97-082**), "Sustainable Crop/Livestock Systems in the Texas High Plains", Texas Tech University researchers hypothesized that viable grazing systems could be developed and that by integrating crops, forage, and livestock in production systems, their complementary benefits would allow a more sustainable use of water and soil while maintaining an appropriate level of crop and livestock production.

Research Summary:

Grazing stocker steers on perennial warm-season grass pastures and on small grains in rotation with cotton required 25 percent less irrigation water, 36 percent less nitrogen, fewer pesticide inputs, and provided more flexibility in marketable products with higher net cash returns per acre than growing cotton in monoculture. Short-term impacts included reduced soil erosion, improved water and nutrient management guidelines, reduced pesticide use, and improved cash flow and marketing opportunities. Longterm benefits included flexibility in agricultural production, reduced water use, less financial risk, long-term economic stability, and continued agricultural productivity in the High Plains region.

Research Objectives:

The overall objective was to develop environmentally sustainable and economically feasible crop and livestock systems that will assure the viability of agricultural activities in the Texas High Plains.

Research consisted of studying an integrated crop/forage/livestock system in comparison with continuous cotton.

Effects of forage plants and animals on cotton yield, forage yield, soil compaction, soil fertility and other measurements were analyzed as a randomized block design with three replications.

Research Results:

• Based on 10 years of research, the crop/livestock system reduced water use by 25 percent compared with continuous cotton. The reduction in water use was due to the favorable water use efficiency of the warm-season perennial grass, which occupied half of the land area within the system. Yield and quality of cotton did not differ between the two systems.

• The old world bluestem provided very practical winter pasture. In addition to a valuable feed source for stocker cattle, when a protein supplement was provided, the grass had excellent soil covering properties and stood up well to continuous grazing during the winter. The old world bluestem provided the majority of the grazing days, compared to rye and wheat.

• Performance of steers during both the pasture phase and the feedlot phase was excellent. Averaged over the 10 years, steers spent 185 days on pasture, from January to mid-July each year.

• Daily gains (1.7 lbs per day) during the pasture and feedlot phases met and exceeded expectations. Steers gained about 306 lbs during the time grazing was allowed and were feedlot ready. Steers averaged 1,264 lbs at the slaughter facility and graded 64 percent Choice and 35 percent Select with a dressing percentage of 64.3 percent.

Sorghum was not a viable component of the crop/livestock system. There were two primary reasons for this. The first was water. Establishment of sorghum came at a time with the limited water available for irrigation was demanded by the growing cotton crop. Water diverted to geminate sorghum would have penalized cotton survival and growth. Secondly, the period of growth for sorghum overlapped with the need to plant rye for winter grazing. Although sorghum may be a valuable part of some systems, it did not fit within the constraints of this system and was thus discontinued after vear one.

• Continuous cotton required more inputs of chemicals including nitrogen fertilizer, pesticides, and plant growth regulators than did the alternative system. Nitrogen fertilizer was reduced about 40 percent in the alternative system. This resulted not only in a lower economic cost but a lower energy input, as well. Four demonstrable impacts emerged from the results of the study that not only have significance in the Texas High Plains, but may also have relevancy in other regions of the country facing similar environmental constraints.

1. Systems can be designed that do use less water than the cotton mono-culture typical of this region.

2. Integrated crop/livestock systems can be as profitable as the cotton monoculture. Averaged over a 10-year period, both systems were comparable in profitability (\$125/acre in profit).

3. Nearly year-round grazing systems can be designed for the Southern High Plains that will support at least average or above-average levels of animal performance.

4. Irrigated small grain forages do not appear to be justifiable for grazing livestock in this region. While these

are high quality forages and provide needed protein, their cost in terms of water, labor, seed, and chemicals does not appear to justify their use.

For a more detailed analyses of the research results, visit the national SARE projects database and search by project number **LS97-082**, "Sustainable Crop/Livestock Systems in the Texas High Plains."

Published paper: Allen, V.G., C.P. Brown, R. Kellison, E. Segarra, T. Wheeler, P.A. Dotray, J.C. Conkwright, C.J. Green, and V. Acosta-Martinez. 2005. *Integrating Cotton and Beef Production to Reduce Water Withdrawal from the Ogallala Aquifer in the Southern High Plains*. Agron. J. 97:556-567.

Photo credit: Texas Tech University TeCSIS

High Plains Water Conservation Resources

General Information

Texas Coalition for Sustainable Integrated Systems (TeCSIS) http://www.orgs.ttu.edu/forageresearch/

Texas Alliance for Water Conservation http://www.depts.ttu.edu/tawc/

TAWC Solutions http://www.tawcsolutions.org/

Texas Water Development Board http://www.twdb.texas.gov/groundwater/ aquifer/majors/ogallala.asp

Texas High Plains Water District http://www.hpwd.org/

USDA-ARS Ogallala Aquifer http://ogallala.ars.usda.gov/

Publications

High Plains Water Conservation Bulletin No. 1: Water Conservation in the Texas High Plains

High Plains Water Conservation Bulletin No. 3: Sustainable Crop/Livestock Systems in the Texas High Plains Phase II

High Plains Water Conservation Bulletin No. 4: Sustainable Crop/Livestock Systems in the Texas High Plains Phase III

High Plains Water Conservation Bulletin No. 5: Diversifying in the Texas High Plains

High Plains Water Conservation Bulletin No. 6: Agroecoystems Economics in the Texas High Plains

High Plains Water Conservation Bulletin No. 7: Soil Quality of Integrated Crop/Livestock Systems

High Plains Water Conservation Bulletin No. 8: Texas Alliance for Water Conservation

High Plains Water Conservation Bulletin No. 9: Water Use of Old World Bluestems in the Texas High Plains

High Plains Water Conservation Bulletin No. 10: Cover Crops and Cotton in the Texas High Plains

High Plains Water Conservation Bulletin No. 11: Agroecosystems Research in the Texas High Plains

Grant Projects

GS15-152 Evaluation of Winter Annual Cover Crops Under Multiple Residue Managements: Impacts on Land Management, Soil Water Depletion, and Cash Crop Productivity

LS14-261 Long-term Agroecoystems Research and Adoption in the Texas Southern High Plains: Phase II

LS11-238 Long-term Agroecosystems Research and Adoption in the Texas Southern High Plains: Phase I

LS10-229 Integrated Crop and Livestock Systems for Enhanced Soil Carbon Sequestration and Microbial Diversity in the Semiarid Texas High Plains

LS08-202 Crop-livestock Systems for Sustainable High Plains Agriculture

LS02-131 Forage and Livestock Systems for Sustainable High Plains Agriculture

GS07-056 Allelopathic effects of small grain cover crops on cotton plant growth and yields

GS02-012 Optimizing Water Use for Three Old World Bluestems in the Texas High Plains

LS97-082 Sustainable Crop/Livestock Systems in the Texas High Plains

Journal Articles

Acosta-Martinez, V., T.M. Zobeck, and V.G. Allen. 2004. Soil Microbial, Chemical and Physical Properties in Continuous Cotton and Integrated Crop-Livestock Systems. *Soil Society of America Journal* 68:1875-1884.

Allen, V.G, C.P. Brown, R. Kellison, E. Segarra, T. Wheeler, P.A. Dotray, J.C. Conkwright, C.J. Green, and V. Acosta-Martinez. 2004. Integrating Cotton and Beef Production to Reduce Water Withdrawal from the Ogallala Aquifer in the Southern High Plains. *Agronomy Journal* 97:556-567.

Allen, V.G., C.P. Brown, R. Kellison, E. Segarra, T. Wheeler, P.A. Dotray, J.C. Conkwright, C.J. Green, and V. Acosta-Martinez. 2005. Integrating Cotton and Beef Production to Reduce Water Withdrawal from the Ogallala Aquifer. *Agronomy Journal* 97:556-567.

Philipp, D., V.G. Allen, R.B. Mitchell, C.P. Brown, and D.B. Wester. 2005 Forage Nutritive Value and Morphology of Three Old World Bluestems Under a Range of Irrigation Levels. *Crop Science* 45:2258-2268.

Philipp, D., C.P. Brown, V.G. Allen, and D.B. Wester. 2006. Influence of Irrigation on Mineral Concentrations in Three Old World Bluestem Species. *Crop Science* 46:2033-2040.

Allen, V.G., M.T. Baker, E. Segarra, and C.P. Brown. 2007. Integrated Irrigated Crop-Livestock Systems in Dry Climates. *Agronomy Journal* 99:346-360.

Philipp, D., V.G. Allen, R.J. Lascano, C.P. Brown, and D.B. Wester. 2007 Production and Water Use Efficiency of Three Old World Bluestems. *Crop Science* 47:787-794.

Marsalis, M.A., V.G. Allen, C.P. Brown, and C.J. Green. 2007. Yield and Nutritive Value of Forage Bermudagrasses Grown Using Subsurface Drip Irrigation in the Southern High Plains. *Crop Science* 47:1246-1254.

Allen, V.G., C.P. Brown, E. Segarra, C.J. Green, T.A.Wheeler, V. Acosta-Martinez, and T.M. Zobeck. 2008. In Search of Sustainable Agricultural Systems for the Llano Estacado of the U.S. Southern High Plains. *Agriculture, Ecosystems and Environment* 124:3-12.

Acosta-Martinez, V., S. Dowd, S. Yung, and V. Allen. 2008. Tag Encoded Pyrosequencing Analysis of Bacterial Diversity in a Single Soil Type as Affected by Management and Land Use. *Soil Biology & Biochemistry* 40:2762-2770.

Dudensing, J., J. Johnson, P. Johnson, and C. Villalobos. 2008. Grazing Alternatives in the Face of Declining Groundwater: A Case from the Southern High Plains of Texas. *Texas Journal of Agriculture and Natural Resources* 21:60-72.

Maas, S.J., and N. Rajan. 2008. Estimating Ground Cover of Field Crops Using Mediumresolution Multispectral Satellite Imagery. *Agronomy Journal* 100(2):320-327.

Wheeler-Cook, E., E. Segarra, P. Johnson, J. Johnson and D. Willis. 2008. Water Conservation Policy Evaluation: The Case of the Southern Ogallala Aquifer. *Texas Journal of Agriculture and Natural Resources* 21:89-102.

Johnson, J., P. Johnson, E. Segarra, and D. Willis. 2009. Water Conservation Policy Alternatives for the Ogallala Aquifer in Texas. *Water Policy* 11:537-552.

Acosta-Martinez, V., G. Burrow, T.M. Zobeck, and V.G. Allen. 2010. Soil Microbial Com

munities and Function in Alternative Systems to Continuous Cotton. *Soil Science Society of America Journal* 74:1181-1192.

Acosta-Martinez, V., Bell, C.W., Morris, B.E.L., Zak, J., and Allen, V.G. 2010. Long-term Soil Microbial Community and Enzyme Activity Responses to an Integrated Cropping-Livestock System in a Semi-arid Region. *Agriculture, Ecosystems and Environment* 137:231-240.

Acosta-Martinez, V., Dowd, S.E., Sun, Y., Wester, D., and Allen, V.G. 2010. Pyrosequencing Analysis for Characterization of Soil Bacterial Populations as Affected by an Integrated Livestock-Cotton Production System. *Applied Soil Ecology* 45:13-25.

Maas, S.J., and N. Rajan. 2010. Normalizing and Converting Image DC Data Using Scatter Plot Matching. *Remote Sensing* 2(7):1644-1661.

Rajan, N., S.J. Maas, and J.C. Kathilankal. 2010. Estimating Crop Water Use of Cotton in the Texas High Plains. *Agronomy Journal* 102:1641-1651.

Allen, V.G., C. Batello, E.J. Berretta, J. Hodgson, M. Kothmann, X. Li, J. McIvor, J. Milne, C. Morris, A. Peeters, and M. Sanderson. 2011. An International Terminology for Grazing Lands and Grazing Animals. *Grass and Forage Science* 66:2-28.

Zilverberg, C.J., P. Johnson, J. Weinheimer, and V.G. Allen. 2011. Energy and Carbon Costs of Selected Cow-calf Systems. *Rangeland Ecology and Management* 64(6):573-584.

Zobeck, T.M., V.G. Allen, J.J. Cox, and D. Philipp. 2011. Variation of Soil and Plant Characteristics Among Old World Bluestem Species. *Agricultural Sciences* 2:347-356.

Davinic, M., L.M. Fultz, V. Acosta-Martinez, F.J. Calderon, S.B. Cox, S.E. Dowd, V.G. Allen, J.C. Zak, and J. Moore-Kucera. 2012. Pyrosequencing and Mid-infrared Spectroscopy Reveal Distinct Aggregate Stratification of Soil Bacterial Communities and Organic Matter Composition. *Soil Biology & Biochemistry* 46:63-72.

Allen, V.G., C.P. Brown, R. Kellison, P. Green, C.J. Zilverberg, P. Johnson, J. Weinheimer. T. Wheeler, E. Segarra, V. Acosta-Martinez, T.M. Zobeck, and J.C. Conkwright. 2012. Integrating Cotton and Beef Production in the Texas Southern High Plains I: Water Use and Measure of Productivity. *Agronomy Journal* 104:1625-1642. Zilverberg, C.J., V.G. Allen, C.P. Brown, P. Green, P. Johnson, and J. Weinheimer. 2012. Integrating Cotton and Beef Production in the Texas Southern High Plains II: Fossil Fuel Use. *Agronomy Journal* 104: 1643-1651.

Trojan, S, and C. West. 2012. Conserving Water and Maintaining Economic Viability by Grazing Introduced Perennial Grasses. *Rangeland Issues* 1(3):1-7. National Ranching Heritage Center, Texas Tech University, Lubbock.

Song, Cui, V.G. Allen, C.P. Brown, and D. B. Wester. 2013. Growth and Nutritive Value of Three Old World Bluestems and Three Legumes in the Semi-arid Texas High Plains. *Crop Science* 53:1-12.

Johnson, P., J. Zilverberg, V.G. Allen, J. Weinheimer, C.P. Brown, R. Kellison, and E. Segarra. 2013. Integrating Cotton and Beef Production in the Texas Southern High Plains III: An Economic Evaluation. *Agronomy Journal* 105:929-937.

Davinic, M., J. Moore-Kucera, V. Acosta-Martinez, J. Zak, and V. Allen. 2013. Soil Fungal Groups' Distribution and Saprophytic Functionality as Affected by Grazing and Vegetation Components of Integrated Cropping-Livestock Agroecosystems. *Applied Soil Ecology* 66:61-70.

Fultz, L.M., J. Moore-Kucera, T.M. Zobeck, V. Acosta-Martinez, and V.G. Allen. 2013. Aggregate Carbon Pools After 13 Years of Integrated Crop-Livestock Management in Semi-arid Soils. *Soil Science Society of America Journal* 77(5):1659-1666.

Li, Y., V.G. Allen, F. Hou, J. Chen, and C.P. Brown. 2013. Steers Grazing a Rye Cover Crop Influence Growth of Rye and No-till Cotton. *Agronomy Journal* 105: 1571-1580.

Li, Y., V.G. Allen, J. Chen, F. Hou, C.P. Brown, and P. Green. 2013. Allelopathic Influence of Wheat or Rye Cover Crop on Growth and Yield of Notill Cotton. *Agronomy Journal* 105: 1581-1587.

Fultz, L.M., J. Moore-Kucera, T.M. Zobeck, V. Acosta-Martinez, D.B. Wester, and V.G. Allen. 2013. Organic Carbon Dynamics and Soil Stability in Five Semi-arid Agroecosystems. *Agriculture, Ecosystems and Environment* 181:231-240.

Benson, A., and C. Zilverberg. 2013. A Bioeconomic Model for Sustainable Grazing of Old World Bluestem Under Uncertainty. *Natural* Resources 4:362-368.

Rajan, N., S. Maas and C. Song. 2013. Extreme Drought Effects on Carbon Dynamics of a Semiarid Pasture. *Agronomy Journal* 105:1749-1760.

Zilverberg, C.J., C.P. Brown, P. Green, M.L. Galyean, and V.G. Allen. 2014. Integrated Crop-Livestock Systems in the Texas High Plains: Productivity and Water Use. *Agronomy Journal* 106 3:831-843.

Song, Cui, C.J. Zilverberg, V.G. Allen, C.P. Brown, J. Moore-Kucera, D.B. Wester, M. Mirik, S. Chaudhuri, and N. Phillips. 2014. Carbon and Nitrogen Responses of Three Old World Bluestems to Nitrogen Fertilization or Inclusion of a Legume. *Field Crops Research* 164:45-53.

Zilverberg, C.J., and V.G. Allen. 2014. Repeated Grazing Affects Quality and Sampling Strategies of 'WW-B. Dahl' Old World Bluestem. *Texas Journal of Agriculture and Natural Resources* 27:84-87.

Zilverberg, C.J., and V.G. Allen. 2014. Technical Note: Repeated Grazing Affects Quality and Sampling Strategies of 'WW-B.Dahl' Old World Bluestem. *The Texas Journal of Agriculture and Natural Resources* 27:84-87.

Zilverberg, C., P. Brown, P. Green, V. Allen, and M. Galyean. 2015. Forage Performance in Crop-Livestock Systems Designed to Reduce Water Withdrawals from a Declining Aquifer. *Rangelands* 37:55-61.

This bulletin was produced and published by the Southern Region of the Sustainable Agriculture Research and Education (SARE) program, and reviewed by Texas Tech University. This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, through Southern Sustainable Agriculture Research and Education, under subaward numbers: LS97-082.

This bulletin was written by Candace Pollock, Southern Region SARE program, with reviews and revisions made by Chuck West, Philip Brown, and Vivien Allen (retired) of Texas Tech University TeCSIS. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. Photos courtesy of Texas Tech University TeCSIS.

Funded by the USDA National Institute of Food and Agriculture (NIFA), Southern SARE operates under cooperative agreements with the University of Georgia, Fort Valley State University, and the Kerr Center for Sustainable Agriculture to offer competitive grants to advance sustainable agriculture in America's Southern region. USDA is an equal opportunity employer and service provider.

High Plains Water Conservation Bulletin **No. 2** Sustainable Crop/Livestock Systems in the Texas High Plains: Phase I