Winter Legumes to Increase Water-Use-Efficiency in No-Till Systems?

Perry Miller1, Jon Wraith1, and Mike Greytak2

1Dept. Land Resources and Environmental Sciences, Montana State University, Bozeman, MT. 2Dryland No-till farmer, Hardin, MT at time of this study. Since retired, current address unknown.

Our Story
In 1998 and 2000, Mike Greytak, a highly diversified no-till farmer in southeastern Montana, organized well attended no-till conferences in Billings. Much discussion at these farm conferences centered around stable management questions for soil water management. Mike challenged us to develop a project that studied crop water-use-efficiency (WUE) in continuous, diversified dryland cropping systems in Montana. Our belief was that knowledge about maximizing WUE would lead to increased sustainability of Montana farming systems by increasing profitability and building healthier soils and biological diversity.

Western SARE seemed a logical source of funding for this type of sustainable agriculture research. We first applied for a research grant in 2000, and after our 3rd application in 2002, we were awarded 20% of our request. That was insufficient funding to conduct our planned project but, we’d since become very interested in the potential for winter lentil and pea to help intensify winter wheat-based systems, and together with funding from the USDA Cool Season Food Legume program we planned a project to investigate the effects of wheat stubble management on winter survival, yield, and water use of winter lentil and pea. In 2001, Mike Greytak harvested two field plots of Austrian winter pea on his farm. His September seeding date yielded 22 bu/acre while a March seeding date yielded only 7 bu/acre. We were quite excited about the potential for winter legumes to be a “game changer” in diversifying fallow — winter wheat systems in a water-use-efficient manner.

Experimental Parameters
Adjacent pea and lentil sites were established on representative no-till farm fields for 3 years. After wheat harvest, stubble was cut short (4 inches) or left tall (12 – 16 inches) for main plot treatments within each crop: pea and lentil. Early and late September seeding dates X two winter genotypes plus two high-yield spring cultivars was randomized as six subplots within the stubble height main plots. Experimental winter pulse breeder lines were referred to as Morton and ‘79 for lentil, and ‘706(tall) and ‘726(short) for pea. The controls were spring cultivars, Brewer and Richlee lentil, and Delia and Mozart pea. Plots were 6 x 40 ft. Additionally, one breeding line each of winter pea (‘726”) and lentil (‘79”) was seeded at four plant densities in early September in tall stubble only. Data collection included phenological development rates, stand density, grain productivity and quality, and soil water extraction.

Answers
1) How do winter lentil and winter pea compare for hardiness and are there genetic differences within pea or lentil for hardiness?
2) How do winter lentil and winter pea seed yield and WUE compare with spring lentil and pea?
3) How would cereal stubble height affect winter survival, and subsequent yield formation?
4) How early would winter lentil and pea have to be seeded to reduce the risk of everwinter stand loss?
5) Would optimal plant densities for winter lentil and pea be the same as their familiar spring counterparts?

Field Site
A field site was chosen at Amsterdam, MT, to represent the cold dry winter climate typical of the Rocky Mountain Front region. Long-term average annual precipitation is 14.1 inches (360 mm). This area grows winter wheat predominantly in a fallow – wheat cropping sequence.

Experimental Parameters
Adjacent pea and lentil sites were established on representative no-till farm fields for 3 years. After wheat harvest, stubble was cut short (4 inches) or left tall (12 – 16 inches) for main plot treatments within each crop: pea and lentil. Early and late September seeding dates X two winter genotypes plus two high-yield spring cultivars was randomized as six subplots within the stubble height main plots. Experimental winter pulse breeder lines were referred to as Morton and ‘79 for lentil, and ‘706(tall) and ‘726(short) for pea. The controls were spring cultivars, Brewer and Richlee lentil, and Delia and Mozart pea. Plots were 6 x 40 ft. Additionally, one breeding line each of winter pea (‘726”) and lentil (‘79”) was seeded at four plant densities in early September in tall stubble only. Data collection included phenological development rates, stand density, grain productivity and quality, and soil water extraction.

3) Stable height effects?
• Tall stubble was reported to increase WUE in spring pea and lentil (Cutforth et al., 2002).
• Stable height effects on winter pea and lentil were inconsistent in this study. In fall 2001, rain during Sep 9 – 21, followed by warm growing conditions, resulted in superior establishment in tall stubble. Further, snowpack remained in tall stubble, but not in short stubble, during a 7°F overnight freeze April 1, 2002. This protected seedlings during a critical injury event, resulting in a clear survival/yield advantage in tall stubble. In fall 2002, precipitation was delayed until Oct 11, followed by cool growing conditions. Establishment, survival, and yield was superior in the winter short stubble micro-environment. In fall 2003, September precipitation was insufficient to germinate pea and lentil, and no precipitation was received in Oct or Nov, resulting in zero survival for all winter pea and lentil plots. The farmer’s spring pea field yielded 30% greater in the tall stubble plots.

4) Fall seeding date?
• Recommendations from this and subsequent studies in Montana are that winter pea and lentil should be seeded earlier than winter wheat, ideally into moist soil prior to Sep 14.
• Farmer experience with seeding date has been inconsistent. Farmer experience with seeding date has been consistent. Farmer seeding date trials at Big Sandy, MT. (Bob Quinn) showed superior plant density and spring growth associated with Sep 17 compared with Sep 30 seeding dates, but acceptable stands in both cases. However, another grower in SE Montana near Baker, MT, reported good success with dormant fall plantings in late October to early November for two years. Another grower in SW Montana had no success with dormant seeding

5) Optimal Seeding Rates?
• Seedings rates targeted 40, 80 (=1X), 120, and 160 plants/m2 for pea and 60, 120 (=1X), 180, and 240 plants/m2 for lentil. Results from this and related studies suggested farmers should increase seeding rates by 25 - 50% over that used for spring types since fall germination was less successful than spring germination (fall averaged 75% of spring rate) and some degree of overwinter stand loss is unavoidable.
• A soil composition complication is that winter pea and lentil stand loss is typically “patchy,” resulting in small weed management challenges. In fact, following winter survival, weed management is likely the leading challenge that farmers face with winter pea and lentil production.

Winter lentil in tall stubble at Amsterdam, MT, June 16, 2003. Seeding date = Sep 13, variety = Exp Line ‘79’ (best case winter lentil)

Spring lentil in tall stubble at Amsterdam, MT, June 16, 2003. Seeding date = Sep 13, variety = Richlee

Citations

The authors gratefully acknowledge funding support from the USDA Cool Season Food Legume Program and farmer collaboration with Matt Flikkema, Belgrade, MT. Technical expertise was capably provided by Jeff Holmes, Mike Silk, and Marty Mathern.

Figure 1. 1971-2000 average monthly precipitation, September to August, at Amsterdam, MT (annual total = 14.1 inches or 360 mm). This area grows winter wheat predominantly in a fallow – wheat cropping sequence.

Figure 2. 1971-2000 average monthly minimum and maximum temperatures, September-August, at Amsterdam, MT.

References

The authors gratefully acknowledge funding support from the USDA Cool Season Food Legume Program and farmer collaboration with Matt Flikkema, Belgrade, MT. Technical expertise was capably provided by Jeff Holmes, Mike Silk, and Marty Mathern.

Figure 1. 1971-2000 average monthly precipitation, September to August, at Amsterdam, MT (annual total = 14.1 inches or 360 mm).

Figure 2. 1971-2000 average monthly minimum and maximum temperatures, September-August, at Amsterdam, MT.