Nitrogen Management for Carbon Credit: Development and Implementation of a Nitrous Oxide Emission Reduction Protocol and Project Neville Millar and G. Philip Robertson

W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA and Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI, USA

OVERVIEW

Carbon Markets and Offsets

Carbon offsets are credits traded on carbon markets that represent GHG emissions reductions generated from a change in management practice (Figure 1).

Compliance and Voluntary carbon markets are active in the US and globally, and can be an on-farm income source (Figure 2). Offsets may be in short supply and agriculture can be an important source.

Nitrous oxide (N₂O) with its high global warming potential (GWP) or CO_2e of ~300 provides a high payback for its emission prevention.

Figure 1. Schematic depicting carbon offset transaction

Nitrous Oxide and Nitrogen

Emissions of N₂O represent the single largest contributor to the global warming impact of US cropping systems.

Nitrogen input to the soil is the single most reliable predictor of N₂O emissions.

Reducing nitrogen (N) fertilizer rate leads to lower N₂O emissions and underpins our approach for generating carbon offsets.

OBJECTIVES

Develop a Protocol and a Project that uses the Protocol to deliver agricultural offsets to the carbon market through N₂O emissions reductions from N fertilizer rate reductions to cropland.

Protocol (to calculate N_2O emissions reductions) must have:

- Scientific integrity and genuine environmental benefits
- Transparency for all stakeholders
- Ease of use for project implementation

Project (contract to reduce N_2O emissions) must have:

- Low farmer effort and cost (data, documentation, invasiveness)
- Low verification complexity
- Fast adoption and broad uptake

Bibliography: Millar et al. 2010. Mitigation and Adaptation Strategies for Global Change, 15:185–204. Hoben et al. 2011. Global Change Biology. 17:1140–1152. Millar et al. 2012. American Carbon Registry, Winrock International, Little Rock, Arkansas.

METHODOLOGIES

Figure 3. Static and automatic chambers sampling and analysis

Figure 4. MI field locations, management, and experimental design

FINDINGS **Protocol Accounting and Benefits**

Greater N₂O emissions reductions from reduction in N rate (A) with non– linear (C) compared to linear (B) relationship (Figure 5).

Protocol Flexibility and Impact

N rate reduction achieved through:

- Economic optimization (Figure 6); • Timing;
- Formulation;
- Cover-crop N capture

Potential Carbon Volumes from corn

Linear: Reduction (138 \rightarrow 120 lb N a⁻¹) = 0.04 tons CO₂e a⁻¹ yr⁻¹ Exponential: Reduction (225 \rightarrow 175 lb N a⁻¹) = 0.35 tons CO₂e a⁻¹ yr⁻¹ North Central Region: ~40 Million Metric Tons of CO₂e over five-years

Benefits include

• Reduced agricultural GHGs • Reduced levels of reactive N • Delivery of offset credits • No productivity penalty Farmer financial compensation

Figure 5. (left) N fertilizer rate vs. N₂O emissions

CHALLENGES

Protocol Validation Issues

- Base Years

Proving No Project Leakage

American Carbon /

CLIMATE ACTION

Project Progress

