

United States Department of Agriculture

James Hoorman NRCS Northeast Soil Health Specialist 419-421-7255 James.Hoorman@oh.usda.gov

How Soil Health can Improve Water Quality and Reduce Nutrient Runoff

Natural Resources Conservation Service

nrcs.usda.gov/

Agriculture in Lake Erie Basin

00000000

- 4.2 Million Acres Maumee Watershed
- 4.9 Million Acres in Lake Erie Basin
- 59.1% cropland
- 72% cropland in Northwest Ohio.

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

10/09/11 Image Lake Erie

or Agriculture Renewed Concerns about ...

Lake Erie Nutrient Loading

- Issue in 1960-1970's was Total P Loading
- Issue in 1990-2000's is Bioavailable or Dissolved Reactive Phosphorous
- Current P Use Efficiency 10% 50% OR 25%
- 80% of P runoff comes from 20% of land
- 60-90% of P runoff occurs in the 1-2 most intense rainfall events that occur each year!
- While P soil concentration is critical, most P runoff comes from fields close to streams.

The Ohio State University

SRP in Surface Water

Two Key factors: a) Soil P concentration b) Transport Factor

Soil P concentration

- * Transport Factor
- = Pounds of P Lost to

Surface Water

Phosphorus Testing

About 50-75% of the Available P in soil is

organic. P stabilizes the OM and forms a bridge to the clay.

Our current P use efficiency is 10-50%. Microbes

unlock P chemical bonds and make P plant available.

Annual Loads of Total Phosphorus to Lake Erie, 1967-2007

Dissolved Reactive Phosphorus Concentration

Source: Hiedelberg University

Phosphorus Speciation

Plant Available P

- Soluble Reactive (SRP) P_i Inorganic P P_i
- Exchangeable (ExP) P_o Active Carbon- P_o

Slowly or Not Plant Available P

- Ca²⁺ /Mg ²⁺
 Calcium/Magnesium- P_i
- Fe³⁺/Al³⁺ Iron/Aluminum- P_i
- Res P_o Humus Residual P_o
- Total P = All $P_o + All P_i$

Ferric–P to Ferrous-P

Caused by Saturated Soil Conditions and Lack of Oxygen in soil profile.

Iron is releasing SRP and flows with the water when soils become saturated or flooded.

Conventionaltilled field

Sediment runoff from conventional-tilled field

Clear runoff from notilled field

Impact of disturbed Aggregates

Dynamic Properties: Infiltration

- If rainwater runs off field.... It is not available to the crop
 - Dynamic Soil Property greatly influenced by management

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD. AGRICULTURAL. AND ENVIRONMENTAL SCIENCES

Source: Ohio Agronomy Guide: 12th Edition

Residue cover prevents soil crusts

Stratification of P by Crop Rotation

Crop Rotation	SRP	EP	CaP	Al/FeP	Res P	Total P
C-S-W	0.2c	2.6c	5.1b	6.8c	2.0a	2.3b
C-C	0.3c	3.4c	11.5a	19.4b	1.6b	2.1b
C-S	0.3c	0.6d	13.0a	28.1a	1.5b	2.8 a
S-S	0.3c	0.3d	5.7b	24.7a	2.1a	2.6 a
Alfalfa	0.9b	5.7b	6.6b	1.4d	2.0a	2.1b
Field Grass Waterway	1.7a	7.0a	3.0c	18.3b	1.8a	2.5a
Forest	1.5a	7.3a	1.6c	1.4d	1.9a	1.8c

Vegetated fields had higher SRP & EP?

What happened to the SRP in agricultural fields?

Cover Crops versus Control

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops +NT					
0.34b	1.23 a	21.2a	25.7a	147.7b	196.1b
	8.8X				
Control					
1.42a	0.14b	18.0b	27.1b	162.8a	209.5a
4.2X				1.1X	1.07

Cover crops + NT had significantly lower soil concentration of P in the SRP (4.2x less), and Res P, but much higher EP (8.8X).

Cover Crops vs Control Stratification

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops + NT					
0.4b	61.7a	1.6a	1.4a	1.5b	2.0 a
	9.1X				1.25X
Control					
1.8 a	6.8b	1.4a	1.4a	1.6a	1.6b
4.5X					

Cover crops (Red clover) had significantly lower soil stratification of P in the SRP fraction but significantly higher EP and TP fractions.

P Forest VS Agriculture

Forested Watershed

- Soil Organic P = 645 Kg/Ha
- Inorganic P = 275 Kg/Ha
- Runoff = 0.3 Kg/Ha

Agricultural Watershed

- Soil Organic P = 314 Kg/Ha 50% Less SOM
- Inorganic P = 976 Kg/Ha Mineralization 4x higher
- Runoff = 2.41 Kg/Ha Runoff was 8x higher

Nature and Properties of Soil (Weil & Brady, 2017) page 650

USD/	United States Department of Agriculture	Agriaquolls (Pewamo)						
	P Level Bray P ₁	Fe/Al-P (mg/kg)	Res-P (mg/kg)	TP (mg/kg)	Ratio Res/Fe Al	SOM (%)		
	Low (<25 PPM)	108.0	570.5	711.2	5.3	2.9		
	Medium (25-75 PPM)	125.1	592.9	740.1	4.7	3.1		
	High (75-150 PPM)	286.6	736.3	1052.2	2.6	2.9		
	V. High (150-300 PPM)	275.0	473.9	774.4	1.7	1.6		
	Ex High (>300 PPM)	345.8	655.1	1052.0	1.9	3.3		
	Grass	47.3	449.1	532.5	9.5	8.6		
O	Woods	36.2	261.1	321.9	7.2	12.9		

United States Department of Agriculture Has Phosphorus Changed?

No! But Weather and Practices

have...

1) Weather: Increase number, higher intensity, longer duration rain.

2) We have better environment for cyanobacteria. Warmer weather + more nutrients = Explosion HAB

3) Change in farm size with larger farms. Efficient hybrids

4) More tile spaced closer together with more surface inlets.

- 5) Fertilizer P chemistry has changed. C-S Rotations. More fall broadcast applications to accommodate farm size.
- 6) Tri-State Fertilizer Recommendations have safety factor.
- 7) Vertical tillage + larger farm equipment = soil compaction.
- 8) Fertilizer Enhancers (Avail/Jumpstart)
- 9) Less Soil Organic Matter

10) Less Acid Rain, change in P availability.

4.2pH to 5.2pH Rainwater

Natural Resources Conservation Service

Vertical Tillage

00000000

Has increased significantly since 1995 when SRP started Increasing!

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Bulk Density & Compaction

USD/

United States Department of Agriculture

No-TILL creates Macropores

ECO Farming & live roots acts like a biological valve to absorb N and P.

Natural Resources Conservation Service

nrcs.usda.gov/

SRP Runoff

Fig. 1. Soluble phosphorus transported via runoff from no-tillage and vertical tillage plots. Error bars represent standard error.

TP Runoff

Fig. 2. Total phosphorus transported via runoff from no-tillage and vertical tillage plots. Error bars represent standard error.

Sediment Runoff

Vertical tillage

Fig. 3. Sediment transported via runoff from no-tillage and vertical tillage plots. Error bars represent standard error.

United States Department of Agriculture TP Concentration vs Sediment Runoff

Fig. 4. Relationship between total phosphorus and sediment mass transported during 30 min of runoff from no-tillage and vertical tillage plots.

USDA

United States Department of Agriculture

Field 1: Conventional

Entering stream/open ditch

Field 1: Conventional

Open ditch splitting Field 1. Notice the water level of the ditch.

United States Department of Agriculture

Field 2: Conventional

Residue covering catch basin at bottom

Field 3: No-till field with terminated cereal rye

Notice the level of water in the ditch!

United States Department of Agriculture

Field 3: No-till field with terminated

cereal rye

Clear water coming off field!

United States Department of Agriculture Field 3: No-till field

with terminated cereal rye

Clear water coming off Field 3!

United States Department of Agriculture

Field 3: No-till field with terminated cereal rye clear water entering muddy ditch.

Good Cover Crops

- Cereal rye
- Annual Ryegrass
- Triticale
- Barley
- Wheat

Mixtures/Minimize* Radish* Oats Legumes Other Issues Short pasture Alfalfa hay

When are the cover crops terminated?

Benefits of Cover Crops

- Increase water infiltration Move SRP_i down into soil profile.
- Decrease bulk density and increase pore space for both air and water Less saturated soils.
- Live roots absorb soluble nutrients (N & P).
- Increase soil organic matter content which improves soil structure and holds P tighter SRP_i< EP_o and FeP_i< Res P_o
- Increased N & P uptake & storage means less runoff of N, P, and less soil erosion.

United States Department of Agriculture

James Hoorman NRCS Northeast Soil Health Specialist 419-421-7255 James.Hoorman@oh.usda.gov

How Soil Health can Improve Water Quality and Reduce Nutrient Runoff

Natural Resources Conservation Service

nrcs.usda.gov/