Tree Crops Offer a Resilient Solution for Urban Agriculture

Sarah Taylor Lovell, Associate Professor

Department of Crop Sciences, University of Illinois

Do opportunities exist to create a "closed system" for cities?

Do opportunities exist to create a "closed system" for cities?

Urban agriculture is difficult to justify based on food production alone

Landscape Multifunctionality offers a framework for planning urban spaces

Landscapes that integrate ecological, cultural, and production functions, considering the site-specific context and needs of the users

LANDSCAPE PERFORMANCE

Production Functions

Ecological Functions

Cultural Functions

Landscape Multifunctionality offers a framework for planning urban spaces

Multifunctional ≈ Sustainable

LANDSCAPE PERFORMANCE

Production Functions

Ecological Functions

Cultural Functions

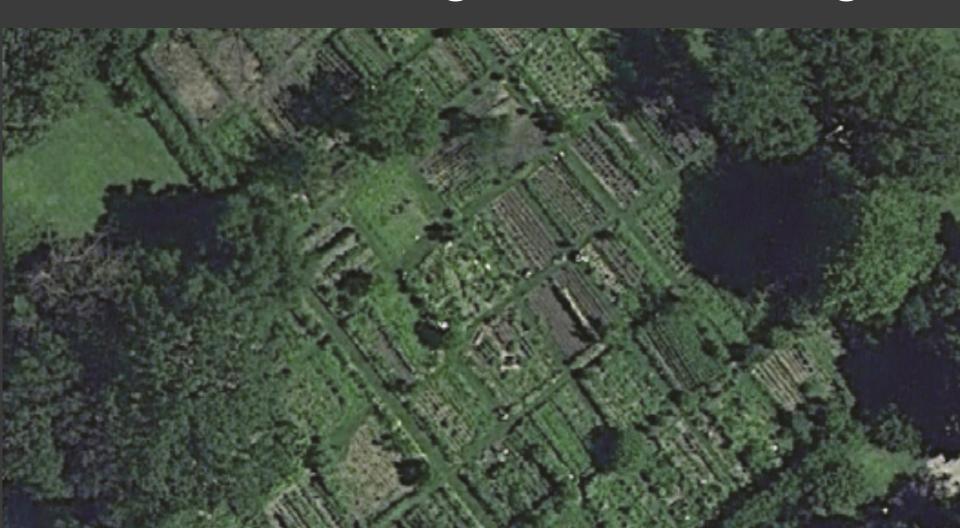
Landscape Multifunctionality offers a framework for planning urban spaces

Production Functions

- •Fresh food, herbs
- Food for processing
- Medicinal products
- Fuel and firewood
- Feed for livestock
- •Fiber in many forms
- Cut flowers

Ecological Functions

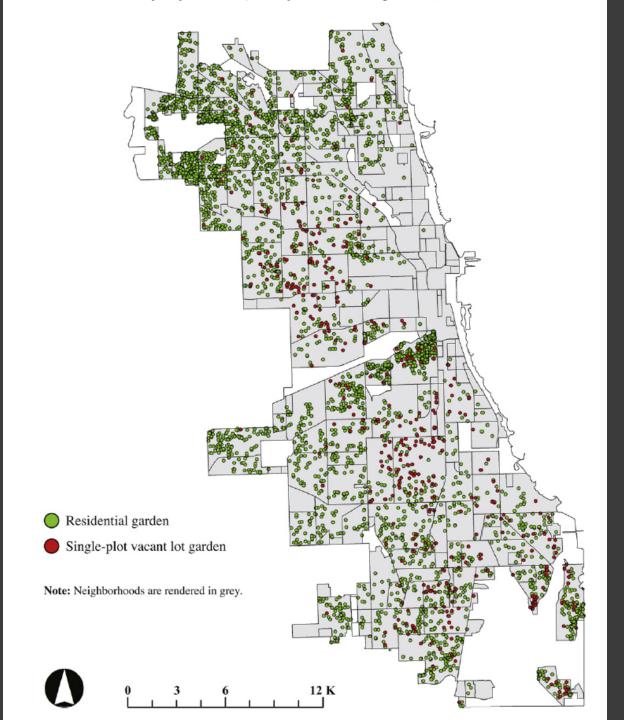
- Biodiversity
- Nutrient cycling
- Microclimate control
- Water quality
- Carbon sequestration
- Soil conservation
- Water storage



Cultural Functions

- Recreation
- Visual Quality
- Artistic Expression
- Education
- Historic Preservation
- Ethnic reflection
- Cultural heritage

PREVIOUS WORK: Characterizing UA in Chicago


Research in Chicago indicates urban agriculture is a prevalent land use type

- Satellite imagery scanned for signature food production sites, including backyard gardens
- Known community garden sites were verified
- Distribution correlated with demographic data

Food production was extensive, and residential was dominating

Classification	N (%)	Area in m ² (%)
Community food garden	135(2.9)	54,518 (20.6)
Urban farm	20(0.4)	12,352(4.7)
School garden	50(1.1)	4385(1.7)
Miscellaneous	7(0.2)	1731(0.7)
Multi-plot vacant lot gardena	7(0.2)	32,319(12.2)
Single-plot vacant lot garden ^b	428 (9.2)	39,607 (15.0)
Small (<20 m ²)	25(0.5)	419(0.2)
Medium (20–49 m ²)	145(3.1)	5084(2.0)
Large (50–100 m ²)	138(3.0)	9676(3.7)
Very large (>100 m ²)	120(2.6)	23,951(9.1)
Residential garden	4001 (86.0)	119,269 ^c (45.1)
Small (<20 m ²)	1852(39.8)	29,076 ^d (11.0)
Medium (20–49 m ²)	1729(37.2)	59,132 ^d (22.4)
Large (50–100 m ²)	359(7.7)	23,909 ^d (9.0)
Very large (>100 m ²)	61(1.3)	$7,152^{c}(2.7)$
Total	4648 (100.0)	264,181° (100.0)

Three communities were studied: field observation and interviews

Table 3. Sample characteristics of the gardeners and gardens selected for a study of 59 African American, Mexican-origin and Chinese-origin households with home food gardens in Chicago, IL (updated from Taylor and Lovell, 2015).

	African American sample	Chinese-origin sample	Mexican-origin sample
Gardener characteristics			
Sample size	17	23	19
Gender ratio			
Male (%)	35.3	9.5	36.8
Female (%)	64.7	90.5	63.2
Age range	Late 40s to late 80s	Late 40s to early 80s	Early 30s to mid-80s
Foreign born (%)	5.9	100	100
Household income <2 × poverty level (%)	42.9	53.8	63.2
Garden characteristics			
Sample size	18	24	19
Location			
Single family lot (%)	55.6	66.7	5.3
Multifamily lot (%)	11.1	33.3	68.4
Vacant lot (%)	33.3	0	26.3
Lot size			
Mean (m ²)	452.9	236.1	360.1
Range (m ²)	275.2–1153.9	51.6-414.7	261.2-871.0

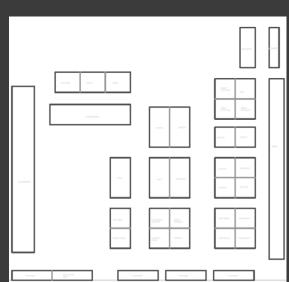
Plant assemblages and structure were unique to ethnic groups

Figure 1. Examples of home food gardens of African American (top left), Mexican-origin (bottom left) and Chinese-origin (right) households in Chicago, IL.

Plant assemblages and structure were unique to ethnic groups

Table 3. Assemblages of unique food crops observed in the home gardens of African American, Mexican-origin and Chinese-origin households in Chicago, IL.

African American	Mexican-origin	Chinese-origin
Black-eyed pea (Vigna unguiculata	Amaranth, green (Amaranthus sp.)	Amaranth, green and red (Amaranthus sp.)
subsp. unguiculata)	Chilies—10 + varieties (Capsicum sp.)	Bitter melon (M. charantia)
Collards (Brassica oleracea Acephala	Epazote (D. ambrosioides)	Bunching onion (Allium fistulosum)
Group)	'Frailes' (unidentified)	Chinese broccoli (Brassica oleracea Alboglabra
Kale (Brassica oleracea Acephala	Hierba buena (Mentha spicata	Group)
Group)	subsp. spicata)	Chinese cabbage (Brassica rapa subsp. chinensis)
Mustard greens (Brassica juncea cvs)	Hoja santa (P. auritum)	Chinese celery (Apium graveolens)
Okra (Abelmoschus esculentus)	Lambsquarters (C. album)	Chinese lettuce (Lactuca sativa cvs)
Poke sallet (P. americana)	Pápalo (P. ruderale)	Chinese mustard (Brassica juncea cvs)
Sweet potato (root) (Ipomoea batatas)	Sugarcane (Saccharum sp.)	Chrysanthemum, edible (Glebionis coronaria)
Turnip (top and root) (Brassica rapa	Tropical corn (Zea mays subsp. mays)	Mustard spinach (Brassica rapa var. perviridis)
subsp. rapa)		Garlic chives (Allium tuberosum)
		Lemongrass (Cymbopogon sp.)
		Malabar spinach (Basella alba)
		Perilla (Perilla frutescens)
		Pomegranate, dwarf (Punica granatum var. nana)
		Sweet potato (leaves) (Ipomoea batatas)
		Watercress (Nasturtium officinale)
		White and yellow cucumber (Cucumis sativus cvs)
		Winter/hairy melon (B. hispida)
		Yardlong bean (Vigna unquiculata subsp. sesquipedalis)
		Yu choy sum (Brassica rapa var. parachinensis)

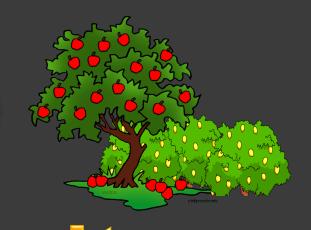

Concluded Home Gardens can supply ecosystem services and disservices

- HG contribute to local food systems
- HG provide culturally appropriate foods
- HG rely heavily on external inputs
- Soil contamination could threaten food safety
- HG conserve biodiversity, but mostly lack trees and shrubs to provide structural diversity

Food gardens mostly lack trees and shrubs to offer structural diversity

- Crops may displace native or ornamental plants
- Gardeners avoid planting trees or shrubs due to the need for full sun to cultivate most food plants
- Is UA incompatible with urban forestry efforts?

CURRENT WORK: Beyond Annual Production

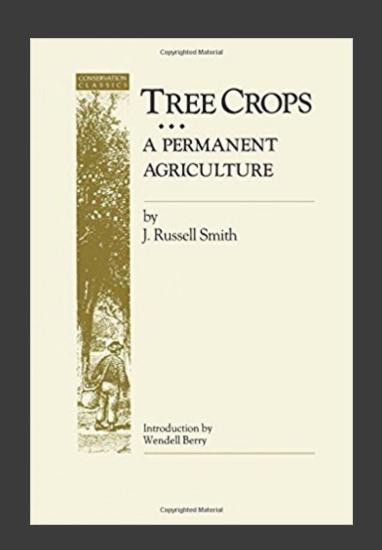

Trees and shrubs provide unique ecosystem services for cities

- Microclimate control to mitigate urban heat island
- Carbon sequestration in woody biomass
- Habitat and food resources for urban wildlife
- Visual quality greater in settings with trees

Drawing on several disciplines, an alternative solution is possible

Horticulture &

Agroforestry


Agroforestry is the integration of trees and/or shrubs with crops and/or livestock

https://forest-atlas.fs.fed.us/benefits-agroforestry.html

Tree crops can offer a production function, providing fruits and nuts

- Trees can themselves be a productive component
- Tree crops are diverse and healthy options for human or livestock consumption

Agroforestry for Food = agroforestry + tree/shrub crops

AGRICULTURAL TRANSFORMATION?

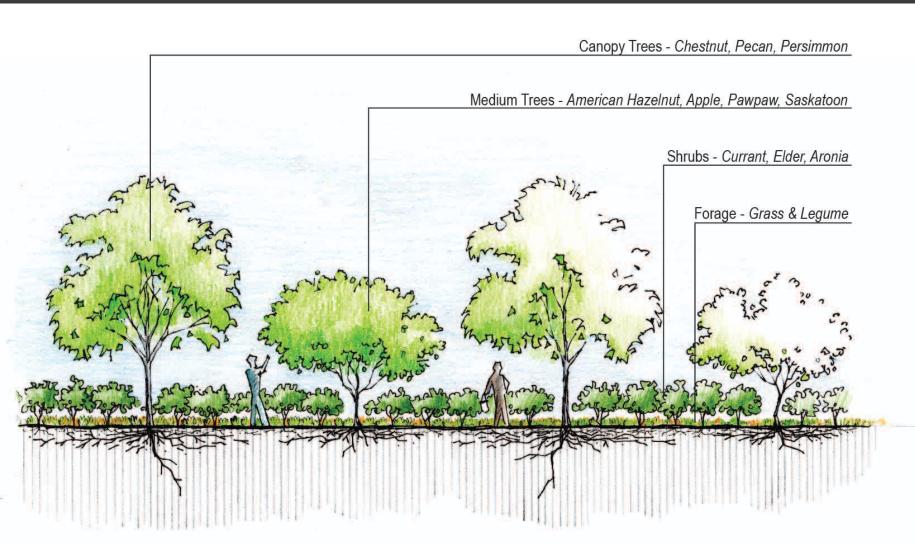
Annual Perennial

Herbaceous — > Woody

Monoculture → Polyculture

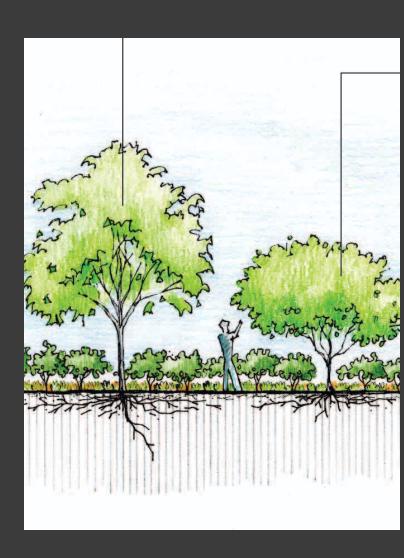
Open System ———>Closed System

Conventional Agriculture



Multifunctional Solution

Can "Agroforestry for Food" work for temperate regions (Midwest US)?

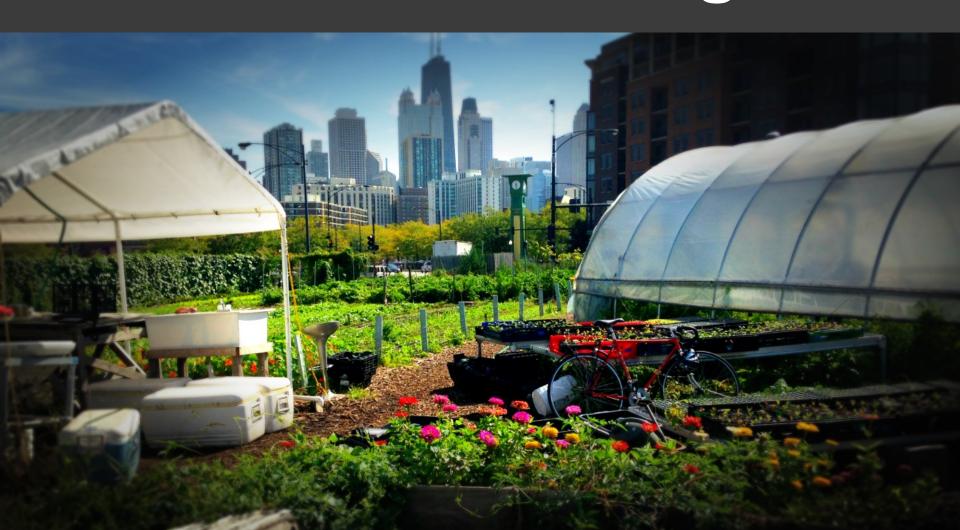

- Mimic the structure of **savanna** ecosystem
- Select species that replace functions of current crops: corn and soybean
 - Chestnut high starch (corn)
 - Hazelnut high oil (soybean)
- Evaluate additional ecosystem services
 - Carbon sequestration, water quality and quantity, biodiversity conservation, etc.
- Focus on marginal lands for early transition

Designing woody polyculture systems for multifunctionality

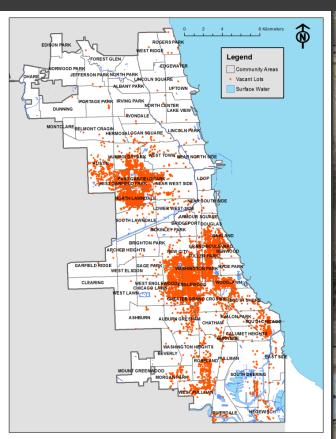
Multi-layered system allows plants to explore different niches

- Carbon sequestration
- Biodiversity conservation
- Water use efficiency
- Nutrient use efficiency
- Water quality
- Adaptation to climate change
- Diversification of enterprises
- Healthier food options

"Agroforestry for Food" field trial will test plant interactions

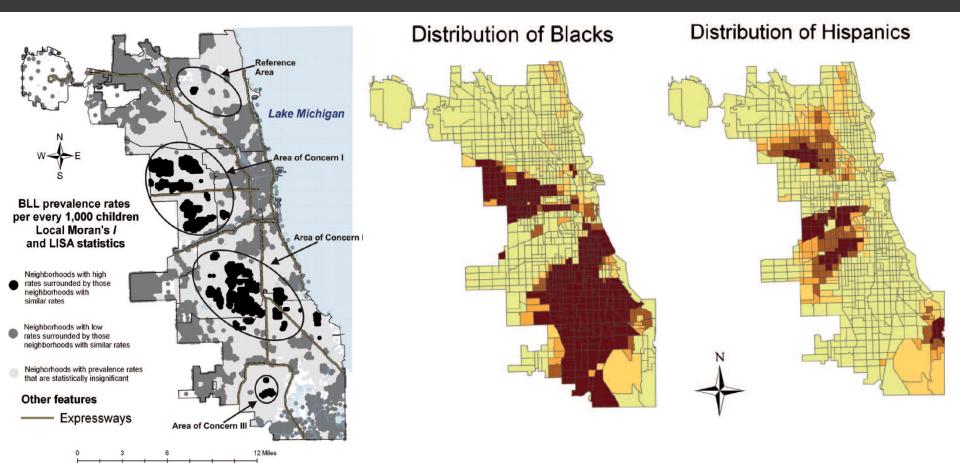

"Agroforestry for Food" field trial will test plant interactions

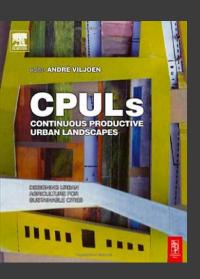
"Agroforestry for Food" field trial will test plant interactions

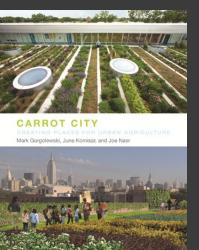


Designing for Resilience in Urban Settings

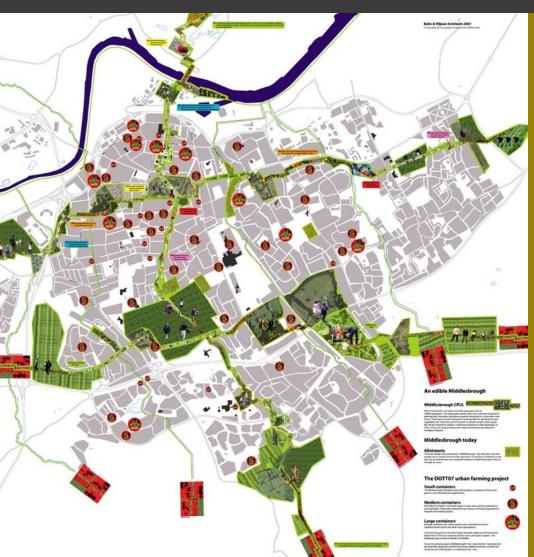
Marginal and underutilized land could be planted with tree crops


In Chicago 70-80,000 vacant lots; 11,000 city-owned

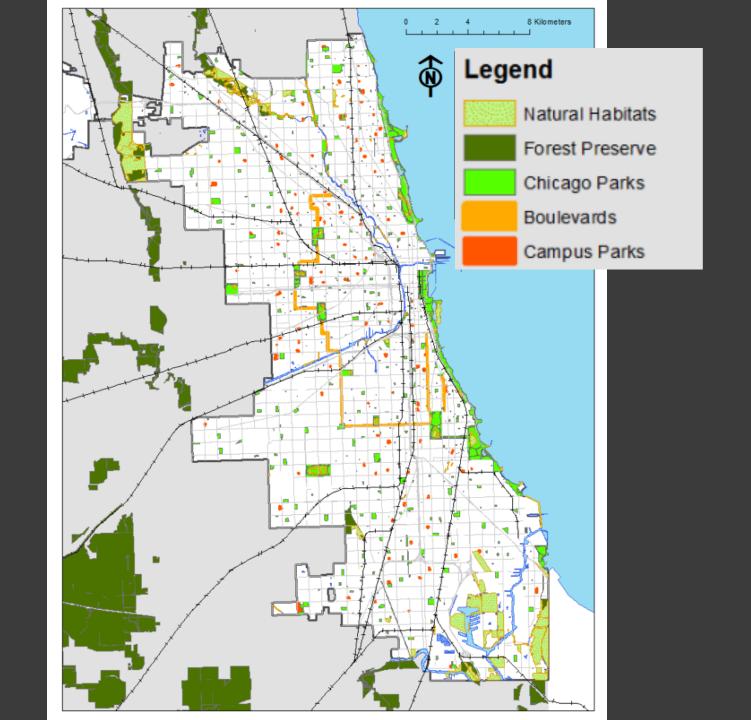


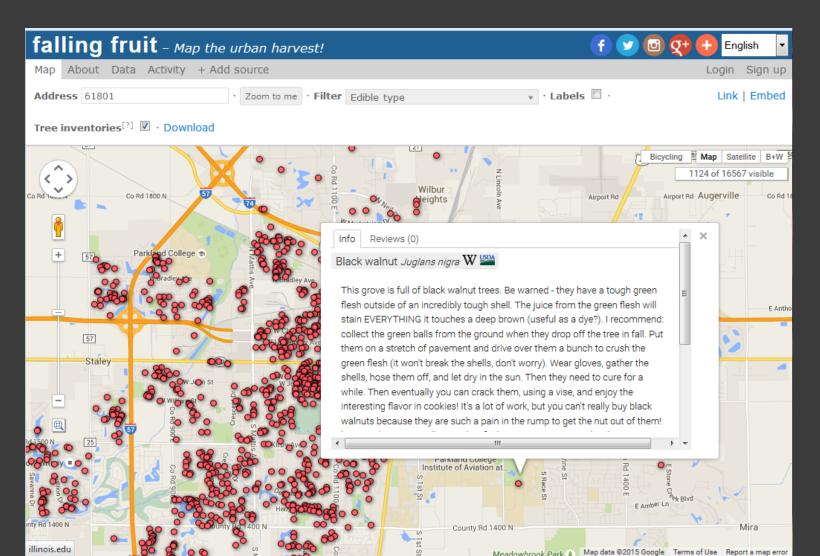

Tree crops lessen food safety issues related to soil contamination

Oyana, T.J., Margai, F.M., 2010. Spatial Patterns and Health Disparities in Pediatric Lead Exposure in Chicago: Characteristics and Profiles of High-Risk Neighborhoods, The Professional Geographer, 62:1, 46-65


Tree crops can be tied to urban tree canopy and greenway efforts

- CPULs: Continuous Productive Urban Landscapes
 - Connected agricultural spaces in the city that incorporate leisure and recreation
 - Incorporate city farms, market gardens, allotments, community gardens, etc.
 - Producing food where one wants to eat it,
 and consuming food where it was grown


Tree crops can be tied to urban tree canopy and greenway efforts



CARROT CITY CREATING PLACES FOR URBAN AGRICULTU Mark Gorgolewski, June Komisar, and Joe Nasr

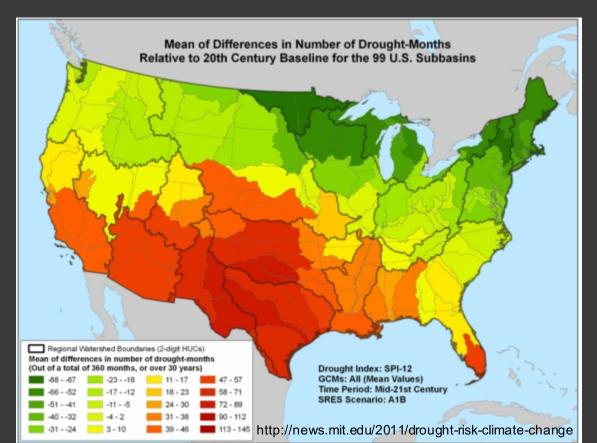
Maps of public fruit trees can be used for gleaning (fallingfruit.org)

Edible landscaping alternatives can be integrated into public spaces

- Shade trees producing fruits and nuts
 - Persimmon, walnut, Chinese chestnut, pecan, others
- Selected low-maintenance orchard trees
 - American plum, pear, cider apple, cherry
- Understory plantings
 - Pawpaw, Amelanchier sp, elderberry, aronia
- Shrubs for hedges
 - Currants, blueberry, hazelnut, brambles
- Ground-covers
 - Strawberry, lingonberry, winterberry

Dedicated community orchards can be added to public parks

Trees and shrubs can provide benefits for cultivated crops too


Buffers provide a wide range of functions to support healthy sites

- Microclimate
- Filtering runoff
- Filtering air
- Productivity
- Visual quality

Tree and shrub species can be selected for future conditions

 Consider species that are native and adapted to local conditions and future climate variability

Nut trees provide shade, store carbon, and supply starch and oil

American HazeInut

- High oil nut
- Dense vegetation
- Ornamental

Chinese chestnut

- High starch nut
- Valuable crop
- Heavy producer

Pecan

- Native to Midwest
- Few pest problems
- Allows dappled light

Fruit trees improve scenic beauty and provide fresh healthy food

Cider apple

- Heavy production
- Showy flowers
- Low maintenance

Common pawpaw

- Native to Midwest
- Fruit eaten fresh
- High value crop

American persimmon

- Rich flavor
- High vitamin C
- Native to Midwest

Shrubs with small fruits support wildlife and human consumption

Aronia berry

- High antioxidants
- Few pests
- Ornamental

Juneberry

- Fruit eaten fresh
- Ornamental
- Many species

Elderberry

- High antioxidants
- Nitrogen cycling
- Vigorous growth

Tree crops contribute to climate change mitigation and adaptation

- Sequester carbon in biomass and soil
- Provide favorable microclimate to reduce urban heat island and related energy use
- Require fewer inputs of energy-intensive materials such as synthetic fertilizers
- Tolerate disturbance, like drought and flooding
- Contribute to conservation of biodiversity
- Protect resources including water and soil

MLAD lab website:

www.multifunctionallandscape.com

Facebook: "Agroforestry for Food"

Support for this project was provided by:

USDA Hatch Act funds (project no. ILLU-802-383)
Illinois Nutrient Research & Education Council (NREC)
UIUC Institute for Sustainability, Energy and Environment

