

Strategies for Growing without Irrigation in Western Oregon

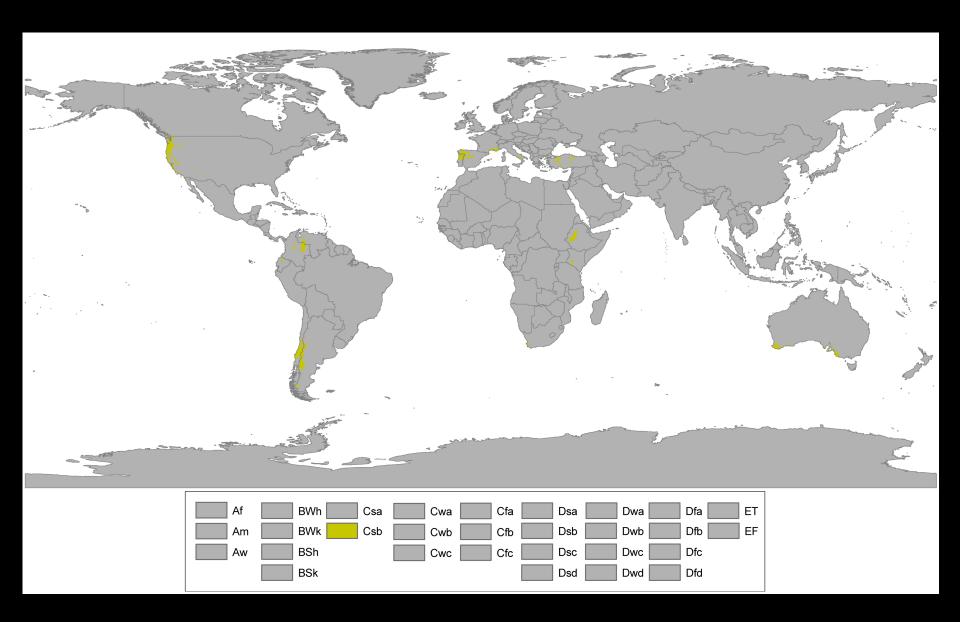
Amy Garrett
Small Farms Program
OSU Extension Service

Introduction

- Cropping options on land without water?
- Climate change
 - reduced snowmelt
 - increased temperatures
 - drought
- Vegetable growers using surface water for irrigation were cut off early during the 2015 growing season - Some as early as June!
- Many new farmers have trouble finding land with unrestricted irrigation rights
- Water is expensive!

Adapting to a Changing Climate: Conserving Water with Dry Farming Management Practices

https://youtu.be/FRjDf7x9Tro


What is dry farming?

- Crop production during a dry season like summers in the Willamette Valley in Oregon and Northern California
- Utilizes the residual moisture in the soil from the rainy season instead of depending on irrigation.

Warm-summer Mediterranean Climate

Resources

Steve Solomon

- Growing Vegetables West of the Cascades
- Water-Wise Vegetables
- Gardening Without Irrigation: or without much anyway
- Gardening when it counts

Carol Deppe

The Resilient Gardener

David Granatstein

Dryland Farming in the Pacific Northwest

California Ag Water Stewardship Initiative

Widtsoe, John. 1920

• Dry Farming: A System of Agriculture for Countries Under Low Rainfall. 1920.

The Dry Farming Project

- Work to date
 - Case studies
 - Western Oregon
 - Northern California
 - Demonstration
 - Field Day
 - Sensory Evaluation
 - Preliminary Yield Data
 - Grant funding
 - Expand Demonstration
 - Growing Resilience: Water Management Workshop Series
 - Participatory Climate Adaptation Research
 - Dry Farming Collaborative

How Does Dry Farming Work?

- Starts with the soil!
 - Water-holding capacity
 - Clay
 - Organic matter For each 1% increase in soil organic matter, soil water storage can increase by 16,500 gallons per acre-foot of applied water!
 - 4' of soil or more (Solomon)
- Site selection
 - Plants as indicators
 - Web Soil Survey
 - Soil auger

128B-Veneta loam, 0 to 7 percent slopes

Map Unit Setting

National map unit symbol: 234m

Elevation: 300 to 800 feet

Mean annual precipitation: 40 to 60 inches

Mean annual air temperature: 52 to 54 degrees F

Frost-free period: 165 to 210 days

Farmland classification: All areas are prime farmland

Typical profile

H1 - 0 to 14 inches: loam

H2 - 14 to 39 inches: clay loam H3 - 39 to 60 inches: clay

Properties and qualities

Slope: 0 to 7 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat):

Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 36 to 72 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: High (about 10.3 inches)

How Does Dry Farming Work?

- Soil preparation
 - Timing
- Planting technique
 - Plant when and where there is moisture
 - Increased plant spacing
 - Pressing soil around seed or transplant
 - Good seed soil contact
 - Creates capillary action wicking moisture to the surface to help seed germinate and get established
 - Pre-soaking seed (Deppe)
- Surface protection
 - Mulching 'dirt or dust mulch' most common on small commercial farms

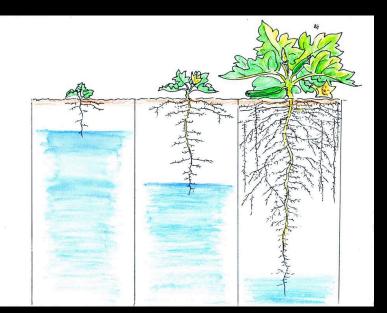
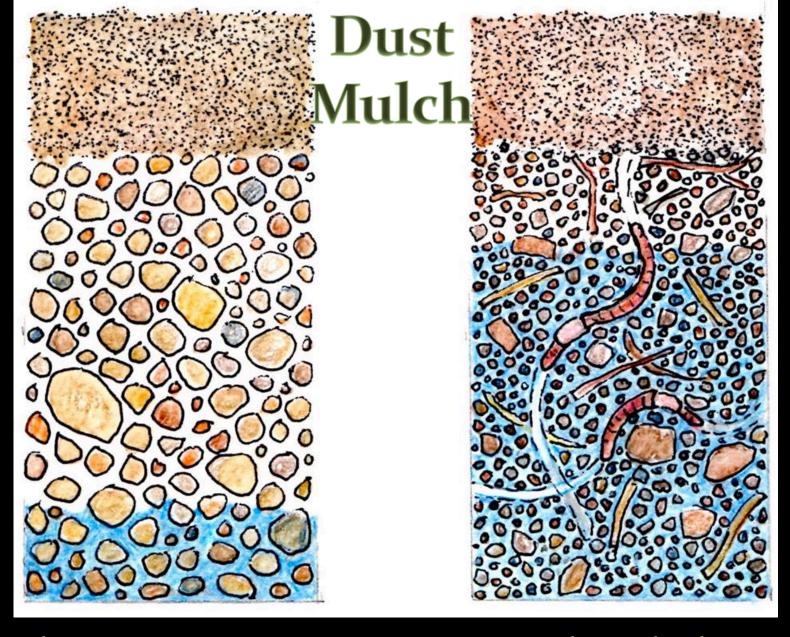



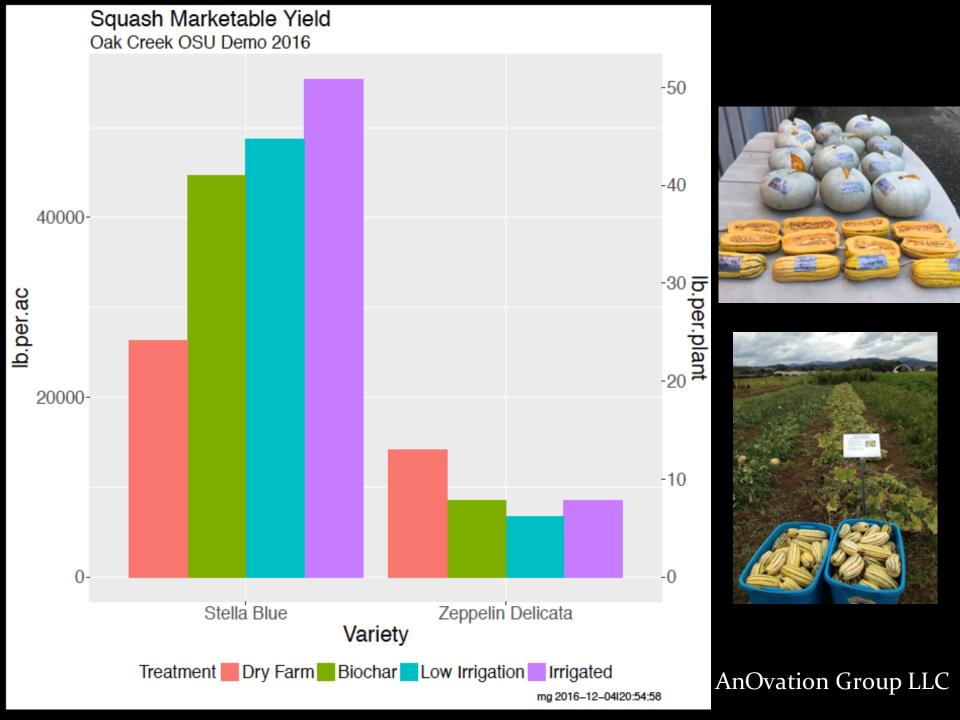
Illustration by Moria Peters

Sand Poor Capillarity Clay; Sandy/Silt Loams Good Capillarity

Crop/Variety Selection

- Tomatoes
- Potatoes
- Watermelons
- Cantaloupes
- Winter squash
- Zucchini
- Dry Beans
- Corn
- Orchard crops
- Grapes

June 3, 2016



July 6, 2016

August 10, 2016

'Dark Star' Zucchini

Corvallis, OR

July 6, 2015

July 15, 2015

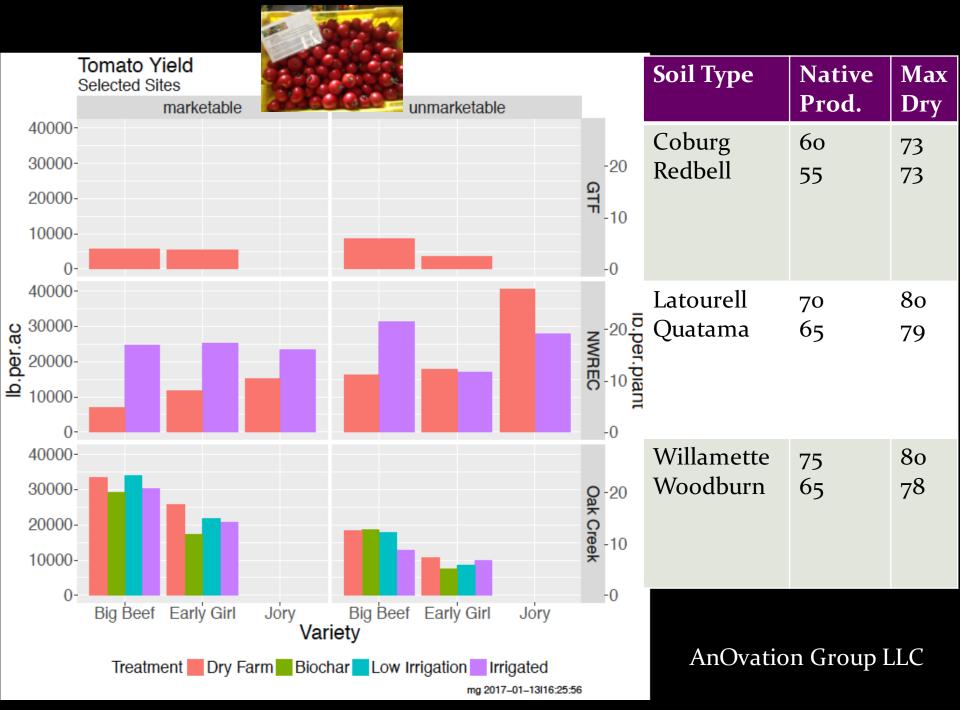
July 27, 2015

September 25, 2015

New Moon Organics -Shively, Ca

August 18, 2015

Gathering Together Farm 2016 Dry Farm Trial

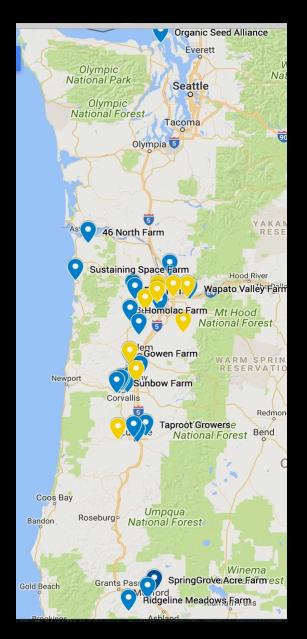


Relative Soil Productivity Ratings by Classification

Soil	Native Productivity	Amendments	Drainage	Irrigation	Max Dry	Max Irrigated	Farm
Chapman	69	+9	0	24	76	100	Harcombe Farm
Chehalis	72	+5	0	+20	77	97	Gales Meadow Farm
Coburg	60	+5	+8	+20	73	93	Gathering Together Farm
Dayton	10	+22	+4	+27	36	63	Oak Creek
Helvetia	57	+5	+8	+20	70	90	Berry Lost
Latourell	70	+10	0	+20	80	100	North Willamette
МсВее	55	+5	+9	+20	72	92	Gales Meadow Farm
Quatama	65	+5	+9	+20	79	99	North Willamette
Redbell	55	+5	+18	+20	73	93	Gathering Together Farm
Willamette	75	+5	0	+20	80	100	Oak Creek
Weeference OSU 1	5 Agricultural Ratings	f dr 5 oils of the Willamet	tte 🎖 lley, EC 1105 O	re ganG tate Unive	er 7 i \$ Extension.	94	Oak Creek, Gowan Farm

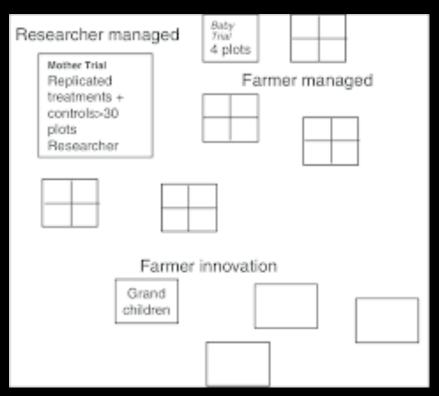
(Huddleston EC 1105) Andy Gallagher – Red Hill Soils

Dry Farming Collaborative


Group of growers, extension educators, plant breeders, and agricultural professionals partnering to increase knowledge and awareness of dry farming management practices with a hands-on participatory approach.

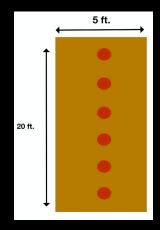
Dry Farming Collaborative

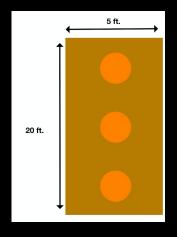
- 30 Trial Hosts
- Communication
 - Facebook Group (450+ members)
 - Email list (120+ members)
- Data Collection
 - Soil testing (5' cores)
 - Soil moisture monitoring
 - Yield
 - Sensory Evaluation
- Events
 - Winter Meeting
 - Field Days
 - Tasting events
 - Conference presentations



2017 Dry Farming Collaborative Replicated Variety Trials

- Farmer selected varieties
 - 5-8 varieties of each crop
 - Up to 20 replications of each crop across sites
- Mother Daughter trial design
- Farmers designed replication size and protocol
- Intention to be inclusive of growers on different scales

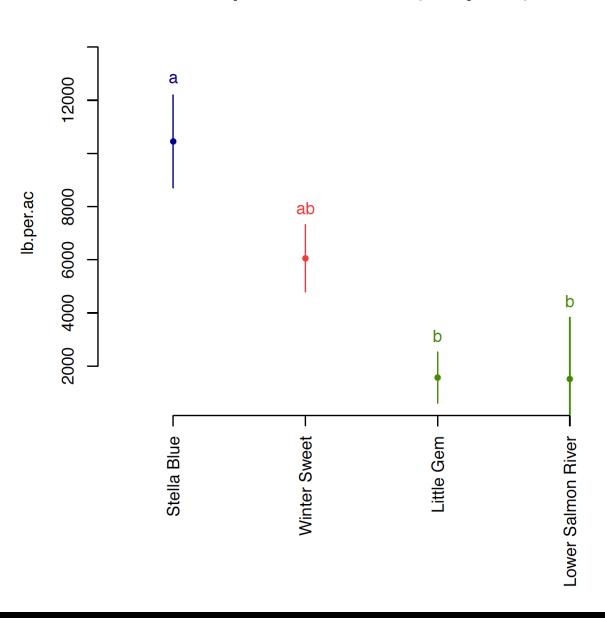


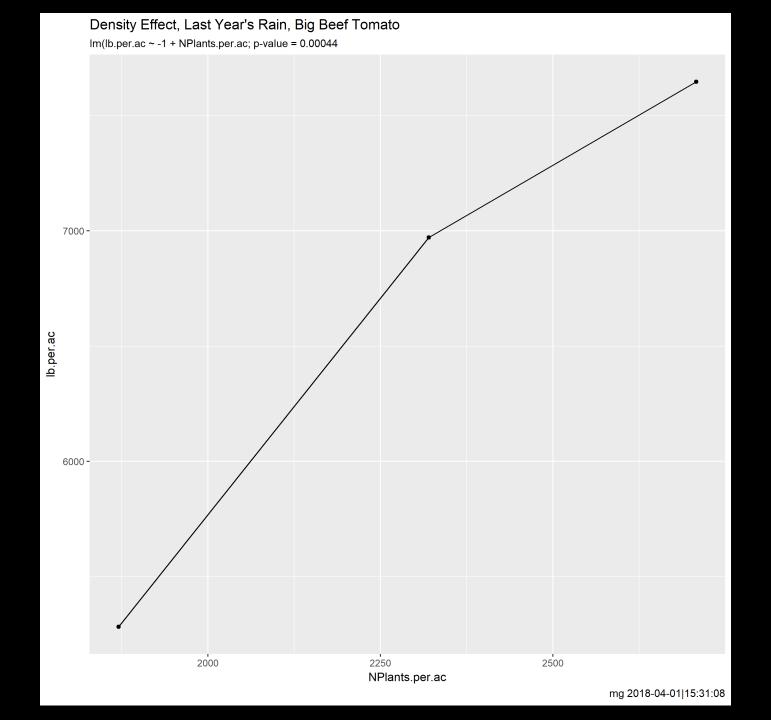

2017 -2018 DFC Replicated Variety Trials

- Tomatoes: Early Girl, Dirty Girl, Stupice, Big Beef, Perfect Rogue, Cour di Bue
- Winter Squash: Stella Blue, , Winter Sweet, Hidatsa, Zeppelin Delicata,, Lower Salmon River,, Little Gem
- **Zucchini**: Dark Star, Costata Romanesco, Goldini Zucchini, Rugosa Friulana, Genovese
- Melon: Eel River, , Christmas Watermelon, Desert King Watermelon, Rich Sweetness, Sweet Freckles, Piel de Sappo
- **Beans:**, Volga German, Whipple, Early Warwick, Beefy Resilient Grex
- Corn: Papas Red, Open Oak Party Mix Dent Corn, Magic Manna, Cascade Ruby Gold, Painted Mountain

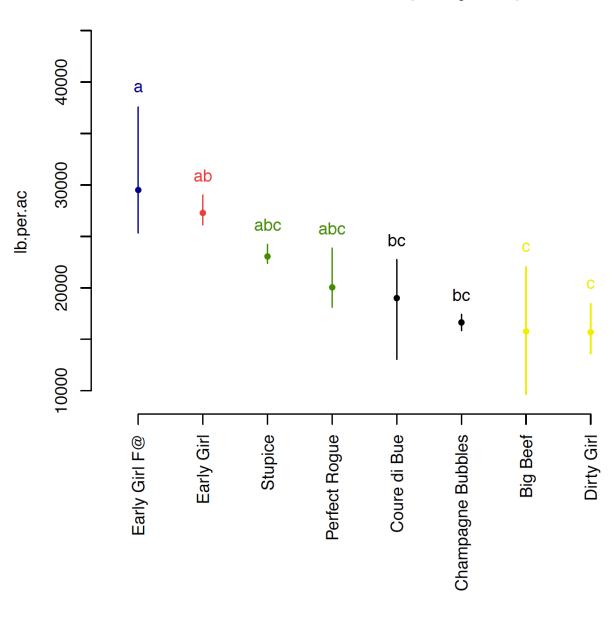
Mother – Daughter Trial Design

Tomato				Melon			Winter Squash				Zucchini			Dry Beans			Corn					
P R	E G	S T	C D B	C D B	S F	P S	E R	D K	Н	L G	W S	L G	R F	C R	R F	B R	M S	V G	H B	C R	P M	P M
P R	C H B	E G	C H B	D G	D K	E R	P S	X M	D Z	L S	W S	S B	G	G	C R	V G	V G	E W	P R	C R	O P	C R
E G	C D B	B B	P R	D G	X M	R S	E R	R S	L S	D Z	L S	S B	D S	G Z	D S	W	M S	M S	O P	M M	O P	H B
E G f	S T	D G	B B	C H B	D K	X M	R S	D K	W S	Н	S B	Н	G Z	R F	G	B R	E W	B R	M M		P R	M M
B B	E G f	E G f	S T	E G f	P S	S F	S F	P S	L G	Н	D Z	W S	G Z	C R	D S	E W	W	W	O P	H B	P R	M M

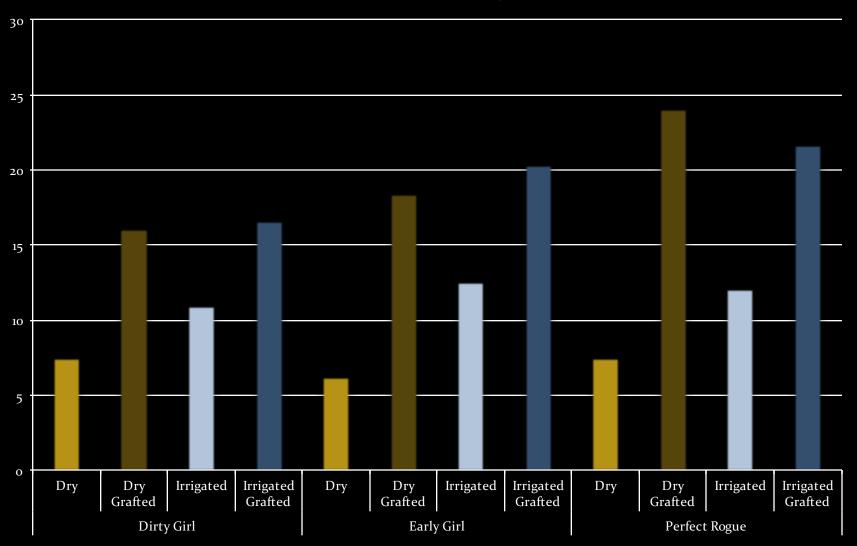



1 rep = 100 sq ft Or ~10 sq meters

2017 DFC Participatory Science Tomato Yield Data


- 5 farms collected yield data on 11 tomato varieties
- Unbalanced design difficult to fit to a statistical model
 - Not all farms grew all varieties
- Statistical analysis
 - Random effects
 - Genotype x environment
 - Fixed effects
 - Plant Density (p=0.14)
 - Results suggest density effect of about 3 lb/plant, density range was from 870-2700 plants/ac
 - Available Water-Holding Capacity (p=0.06)
 - Results suggest an extra inch of water holding capacity in the soil is worth a couplet thousand lbs per acre of yield

Squash Lewis Brown (Tukey HSD)



Tomato Lewis Brown (Tukey HSD)

2017 Oak Creek Tomato Yield per Plant (lbs)

Harvest 8/7 - 9/16

Dry Farming Project Next Steps.....

- Developing Dry Farming page on OSU Small Farms website to be a resource hub for dry farming in our region
- Initiate dry farming extension publication series (release will begin in late 2018)
 - Intro to Dry Farming
 - Site assessment and selection
 - Soil moisture monitoring on 33 farms in 2018
 - Case studies
 - Variety Trial Report
- Continue to build network of growers
 - Collaborative learning
 - Participatory research
 - Expand our drought mitigation toolbox

Topics of Interest

- Participatory Plant Breeding for Dry Farmed Systems
 - Beefy Resilient Grex Carol Deppe (cross between Black Mitla tepary and Gaucho common bean)
- Dry Farmed Orchard Systems
- Hugelkultur
- Different types of mulching
 - Deep straw
 - Wood chips
 - Weed fabric
- Others?

For more info visit:

http://smallfarms.oregonstate.edu/dry-farm/dry-farming-project

Join the Dry Farming Collaborative group on Facebook

Amy Garrett
Small Farms Program
OSU Extension Service
Amy.garrett@oregonstate.edu

Co-creating the future of how we manage water on our farms