Optimal Hay Feeding Days Cow-Calf Farm

Greg Halich
Agricultural Economist
University of Kentucky

Greg.Halich@uky.edu 859-321-9957 cell

Low Hanging Fruit?

High Hanging Fruit?

Final Option to Reduce Hay Feeding?

Reduce Stocking Rate

	High Hay Cost	Low Hay Cost
Low Profit	#1	#2
High Profit	#3	#4

Stocking Scenario #1

Hay Feeding and Stocking Rate Details

Hay Feeding Days	Stocking Rate (Cows per 100 Acres)	Hay Fed (tons)
150	57.0	163.0
120	49.8	114.5
90	41.5	71.5
60	33.7	38.5
30	28.0	16.1
0	23.6	0.0

Note: 1300 lb cows spring calving; 2.5% as-fed feed intake and 15% waste rate

Hay Feeding and Stocking Rate Details

Hay Feeding Days	Stocking Rate (Cows per 100 Acres)	Forage Utilization
150	57.0	69%
120	49.8	67%
90	41.5	61%
60	33.7	54%
30	28.0	50%
0	23.6	46%

Note: 1300 lb cows spring calving; 2.5% as-fed feed intake and 15% waste rate

Stocking Scenario #2 Better Case No Hay Feeding

Hay Feeding and Stocking Rate Details

Hay Feeding Days	Stocking Rate (Cows per 100 Acres)	Hay Fed (tons)
150	57.0	163.0
120	49.8	114.5
90	44.1	76.1
60	38.1	43.7
30	32.6	18.8
0	28.5	0.0

Note: 1300 lb cows spring calving; 2.5% as-fed feed intake and 15% waste rate

Hay Feeding and Stocking Rate Details

Hay Feeding Days	Stocking Rate (Cows per 100 Acres)	Forage Utilization
150	57.0	69%
120	49.8	67%
90	44.1	65%
60	38.1	61%
30	32.6	58%
0	28.5	56%

Note: 1300 lb cows spring calving; 2.5% as-fed feed intake and 15% waste rate

Net Hay Cost

Cost of hay less net nutrient value

- → \$40/ton
- → \$60/ton
- → \$80/ton

Net Hay Cost Example

Cost of hay
Net nutrient value

Net Hay Cost

\$70/ton

<u> \$10/ton</u>

\$60/ton

Additional Costs per Cow per Year

Hay (net fertilizer)	2.86	ton	\$60.00	\$172
Mach/Labor (feeding)	2.86	ton	\$5.60	\$16
Labor (variable/cow)	1.0	hours	\$15.00	\$15
Mineral			\$30.00	\$30
Vet			\$20.00	\$20
Breeding			\$40.00	\$40
Marketing/Trucking			\$30.00	\$30
Other			\$17.00	\$17
Cow Depr/Interest			\$110.00	\$110
Total Specified Costs				\$450

Cow Depreciation and Interest

Example:

Purchase price	\$1600
----------------	---------------

Avg. years	in h	nerd	8	yrs
------------	------	------	---	-----

Interest rate 4%

Cow Depreciation/Interest

Depreciation:

Purchase price \$1600

Cull value <u>\$800</u>

Loss in Value \$800

Depreciation/year = \$800/8 = \$100/year

Cow Depreciation/Interest

Interest:

Avg. Value (8 yrs) \$1200

Interest rate <u>.04</u>

Interest charge (year) \$48

Cow Depreciation/Interest

Combined Depreciation/Interest:

Depreciation \$100

Interest <u>\$48</u>

Total \$148/ year

Gross Return per Cow \$100

Total Specified Costs

\$450

Total Revenue = 525 lb calf x \$1.23/lb = \$646 Adjusted for 85% weaning rate = \$550

Gross Return = \$550 - \$450 = \$100 per cow

Note: Does not account for fixed costs

Calf Price and Gross Return

Gross Return 150 Hay Feeding Days	Calf Price (525 lb)	Prob- ability
-\$100	\$.78	5%
\$0	\$1.01	15%
\$100	\$1.23	30%
\$200	\$1.46	30%
\$400	\$1.90	15%
\$600	\$2.35	5%

Note: \$60/ton net hay scenario; 150 days hay feeding

Avg. Price Steer/Heifer 525 lbs \$1.40 / lb

Profit Change Compared to 150 Hay Feeding Days Weighted Avg. Price Scenarios

Hay Feeding Days	Stocking Rate	\$40/ton Net Hay	\$60/ton Net Hay	\$80/ton Net Hay
150	57.0	-	_	_
120	49.8	-\$176	\$794	\$1,764
90	44.1	-\$315	\$1,423	\$3,161
60	38.1	-\$827	\$1,559	\$3,945
30	32.6	-\$1,515	\$1,369	\$4,253
0	28.5	-\$2,017	\$1,243	\$4,503

Note: Based on \$.95/lb 20%, \$1.23/lb 30%, \$1.46/lb 30%, \$2.01/lb 20% price distribution; mix steer/heifer 525 lbs

Profit Change Compared to 150 Hay Feeding Days Weighted Avg. Price Scenarios

Hay Feeding Days	Stocking Rate	\$40/ton Net Hay	\$60/ton Net Hay	\$80/ton Net Hay
150	57.0	-	-	-
120	49.8	-\$176	\$794	\$1,764
90	41.5	-\$967	\$863	\$2,693
60	33.7	-\$2,049	\$441	\$2,931
30	28.0	-\$2,917	\$21	\$2,959
0	23.6	-\$3,642	-\$382	\$2,878

Note: Based on \$.95/lb 20%, \$1.23/lb 30%, \$1.46/lb 30%, \$2.01/lb 20% price distribution; mix steer/heifer 525 lbs

Recommended Stocking Rates

Net Hay	Hay Feeding
Price	Days
\$40/ton	90-120
\$60/ton	60-90
\$80/ton	0-60

Note: Net hay = hay price less net nutrient value. Assumes you can adjust stocking rate slightly based on general profitability.

Caveats

- Forage quality
- Possibility of using spring surplus
 - → Weaned Calves, etc. (grazing)
 - → Hay
- Drought Risk
- Pasture health
- Results for Eastern US

Base Profitability Increases

Calf Price Increases \$.11/lb

or

Cow Costs Decrease by \$50

Increase Hay Feeding Days:

≈ One Month

Base Profitability Decreases

Calf Price Decreases \$.11/lb
or
Cow Costs Increase by \$50

<u>Decrease Hay Feeding Days:</u>

≈ One Month

Appropriate Stocking Rate on Most Farms?

Recommended Stocking Rates

Net Hay	Hay Feeding
Price	Days
\$40/ton	90-120
\$60/ton	60-90
\$80/ton	0-60

Note: Net hay = hay price less net nutrient value. Assumes you can adjust stocking rate slightly based on general profitability.

