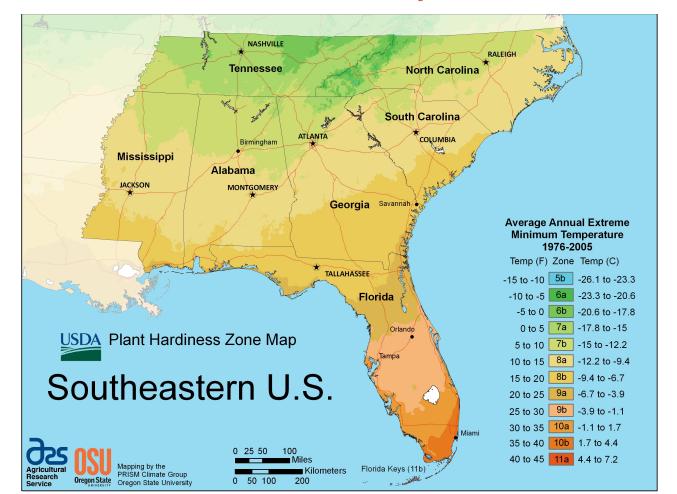
Cover Crops and Soil Health in the Southeastern US


Carlene A. Chase, Julia Gaskin, Kip Balkcom, Sindhu Jagadamma, Chris Reberg-Horton, and Mark Rieter

Our Farms, Our Future Conference, hosted by SARE and NCAT/ATTRA, April 3-5, 2018, St. Louis, MO

Outline

- Reasons for regional diversity
- Florida
- Georgia
- Alabama
- Tennessee
- North Carolina
- Virginia
- The Future

The USDA Plant Hardiness Zone Map for the Southeast

Disciplines Involved in Cover Crop Research

- Agronomy/Crop Science
- Horticultural Science
- Microbiology
- Soil Science
- Weed Science

Top cover crop benefits desired by users

Increases overall soil health 22.4 Increases soil organic matter 20.5 Reduces soil erosion 15.1 Controls weeds 11.5 Reduces soil compaction 7.8 Provides a nitrogen source 4.6 Provides nitrogen scavenging 4.0 Increases yields in the following cash crop 2.5 Fibrous rooting systems 2.2 Economic return (yield, hay, forage, biofuels) 2.0 2.0 Deep tap roots

0.0

5.0

15.0

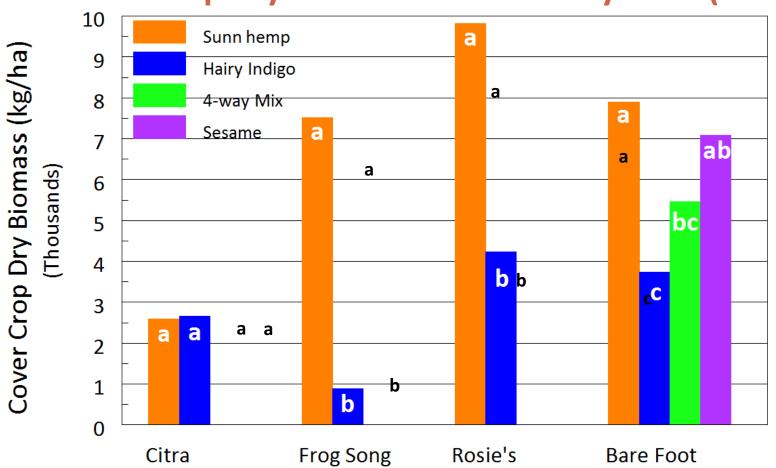
25.0

20.0

10.0

Off-season cover crops for weed and sting nematode suppression for organic strawberry production in Florida

Sunn hemp


Hairy indigo

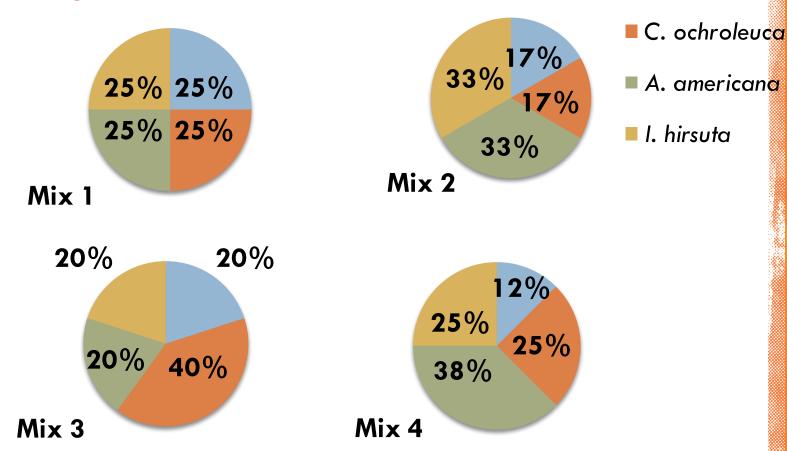
American jointvetch

Short-flower rattlebox

Cover crop dry biomass at 9 WAP by farm (2014)

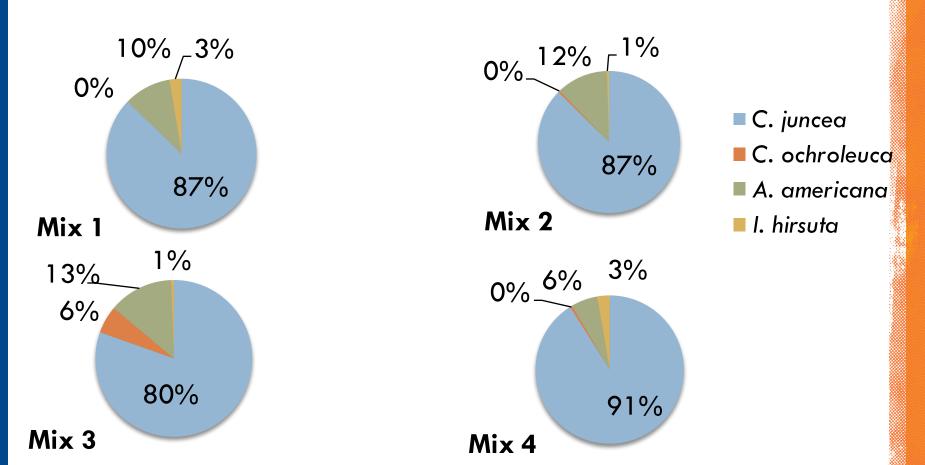
Weed biomass suppression with cover crops by farm

Farm	Cover Crop	Broadleaf	Grasses	Sedges	Total
			(kg/l	na)	
Citra	Weedy	20	186	94	301
	Sunn hemp	25	92	139	256
	H. indigo	5	97	111	213


Weed biomass suppression with cover crops by farm

Farm	Cover Crop	Broadleaf	Grasses	Sedges	Total
		(kg/ha)			
Frog	Weedy	6237 a	217	273 a	6727 a
Song	Sunn hemp	473 b	0	8 b	481 b
	Hairy indigo	2709 b	0	0 b	2709 b
Rosie's	Weedy	200	3796 a	214 a	4267 a
	Sunn hemp	1	42 b	46 b	89 b
	Hairy indigo	0	182 b	18 b	200 b

Weed suppression at Bare Foot Farm


Cover Crop	Broadleaf	Grasses	Sedges	Total
		(kg/h	ia)	
Weedy	1387 a	1322 a	40 a	2749 a
Sunn hemp	39 b	22 b	11 b	73 b
Hairy indigo	268 b	330 b	2 b	600 b
4-way mix	86 b	500 ab	2 b	588 b
Sesame	78 b	243 b	13 b	334 b

Seed Proportions in Mixes

■ C. juncea

Cover crop species proportion in mixes by biomass

Differing sunn hemp susceptibility to sting nematodes

Accession	Origin	Nematodes/100 cm ³ soil
PI 207657	Sri Lanka	4.0 bc
PI 219717	Myanmar	0.0 c
PI 250485	India	3.4 bc
PI 250486	India	3.8 bc
PI 250487	India	0.0 c
PI 314239	Fmr USSR	0.0 c
PI 322377	Brazil	12.8 b
PI 337080	Brazil	7.8 bc
PI 391567	South Africa	0.0 c
PI 426626	Pakistan	0.0 c
PI 468956	US	0.0 c
Corn	US	60.0 a

Why Cool Season Focus?

- Interest in local, organic in groceries, schools, institutions
- Less disease and insect pressure
- Focus on mid-scale farm and wholesale production
- Compost is expensive!

Two main questions

Can we maintain soil quality using cover crops?

Would cool season rotations using cover crops be

profitable?

Positive Key Findings

- Sunn hemp+soil provided 75% of nitrogen for onions
- No differences between rotations for fertility
- Rotations with only cover crops (no compost/manure)
 may maintain soil organic matter

Negative Key Findings

- Do not appear to build soil organic matter
- Reliance on only cover crops at this frequency may deplete labile soil N

Questions about Cover Crop Mixtures

Kip Balkcom

United States Department of Agriculture Agricultural Research Service National Soil Dynamics Laboratory Conservation Systems Research

Questions about Cover Crop Mixtures

- Establishment Segregation of different size seeds.
- Correct/Practical Ratios Don't overload with cereals.
- Benefits Yield, Carbon, and Microbial increase.
- Costs vs Benefits.

3-Way Mixture Test

	Number of Species					
Trt#	1	2	3			
1	Fallow					
2	Cereal rye (90)					
3	Crimson clover (20)					
4	Radish (8)					
5	Cereal rye (45)	Crimson clover (20)				
6	Cereal rye (30)	Crimson clover (20)				
7	Cereal rye (45)	Radish (8)				
8	Cereal rye (30)	Radish (8)				
9	Crimson clover (20)	Radish (8)				
10	Crimson clover (10)	Radish (8)				
11	Cereal rye (45)	Crimson clover (10)	Radish (4)			
12	Cereal rye (30)	Crimson clover (10)	Radish (4)			

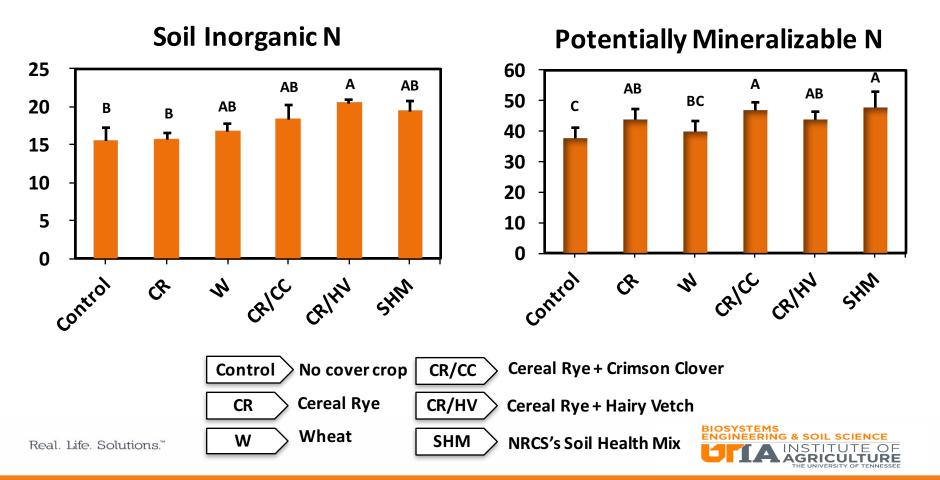
Cover Crop/Mixture	Seeding Rate	2016	2017	2 year Average
	lb/ac		Biomass (lb/ac)
Rye/Clover	30/20	4536	6983	5759
Clover/Radish	10/8	4483	6661	5572
Rye	90	4079	6384	5232
Rye/Clover/Radish	45/10/4	3642	6491	5067
Rye/Radish	45/8	3507	5325	4416
Rye/Clover	45/20	3794	4899	4346
Clover/Radish	20/8	4022	4542	4282
Rye/Clover/Radish	30/10/4	3725	4638	4181
Clover	20	3648	4424	4036
Rye/Radish	30/8	3073	4971	4022
Radish	8	3390	3086	3238
Fallow		498	2104	1301
Total		3533	5042	4288

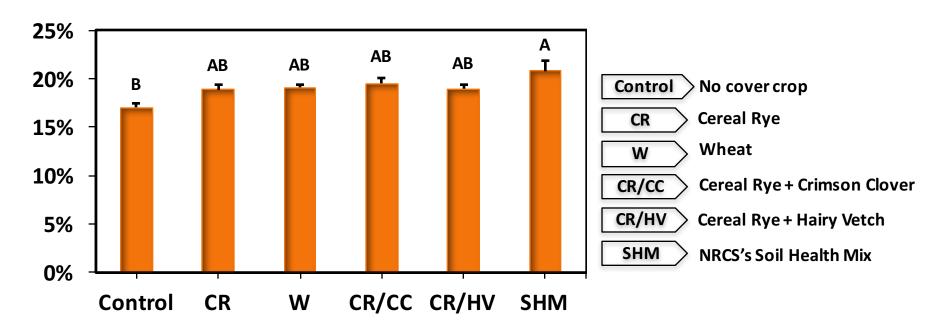
Cover Crop/Mixture	Seeding Rate	Seed Cost	Total Cost	2 year Biomass	Avg Biomass Cost
	lb/ac	US	\$/ac	lb/ac	US \$/100 lb
Radish	8	12.80	30.64	3238	0.95
Rye	90	22.50	56.92	5232	1.09
Clover	20	40.00	57.84	4036	1.43
Clover/Radish	10/8	32.80	50.64	5572	0.91
Rye/Radish	30/8	20.30	38.14	4022	0.95
Rye/Radish	45/8	24.05	41.89	4416	0.95
Rye/Clover	30/20	47.50	65.34	5759	1.13
Rye/Clover	45/20	51.25	69.09	4346	1.59
Clover/Radish	20/8	52.80	70.64	4282	1.65
Rye/Clover/Radish	45/10/4	37.65	55.49	5067	1.10
Rye/Clover/Radish	30/10/4	33.90	51.74	4181	1.24

Multi-species Cover Cropping and Soil Properties

Sindhu Jagadamma
Assistant Professor, Soil Science
University of Tennessee
Email: sjagada1@utk.edu

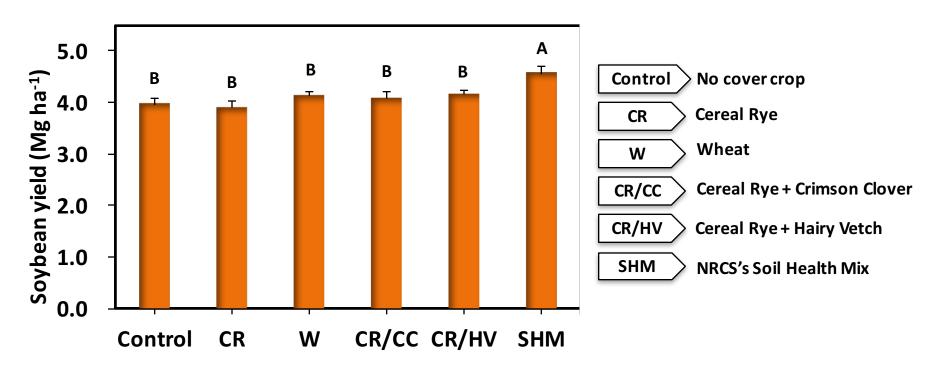
Cover Crop Field Experiment in Tennessee




- Started in 2013
- Corn-soybean system
- No-tillage

	Treatments	Cover crop species	# of
			species
	Control	No cover crop	0
	CR	Cereal Rye	1
	W	Wheat	1
	CR/CC	Cereal Rye + Crimson Clover	2
	CR/HV	Cereal Rye + Hairy Vetch	2
n	Soil Health Mix (SHM)	Cereal Rye, Oats, Daikon Radish, Purple Top Turnips, Crimson Clover, Hairy Vetch	6

Nitrogen availability in Oct. 2016 directly after soybean harvest



Effect of Cover Crops on Gravimetric Soil Moisture Content

Cover Crop Effects on Soybean Yield (2016)

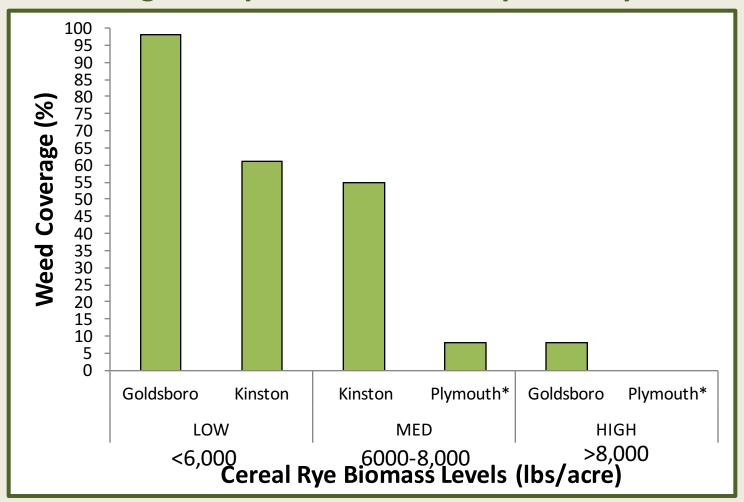
Conclusions

- After three years, multi-species cover cropping increased:
 - Crop yield
 - ⇒ Soil inorganic and potentially mineralizable N
 - ➡ Gravimetric soil moisture
- No change in total and labile fractions of organic C with cover cropping
- Plan to collect multiple years of data from multiple soil depths and time points

Biomass production and residue persistence are key for weed control!

Small Grains

- Can produce substantial biomass, especially cereal rye!
- Residues decompose slowly



Legumes

- Biomass production is moderate
- Residues decompose rapidly, especially when wet and hot

Weed coverage in soybean as affected by cereal rye biomass

Legume cover crops as green manure

Winter pea

Crimson clover

Hairy vetch

Legume cover crop breeding goals

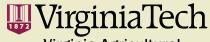
Crimson Clover Goals

- Fall vigor
- Winter hardiness
- Spring biomass production
- Soft & hard seeded varieties
- Early & late maturating cultivars

Hairy Vetch Goals

- Fall vigor
- Winter hardiness
- Spring biomass production
- Remove hard-seededness
- Early & late maturating cultivars

Enhancing Disease Resistance in Winter Pea


Virginia Cover Crops: Successes and Constraints

Virginia Agricultural Experiment Station

Mark S. Reiter, Ph.D.

Soils and Nutrient Management Specialist

Conventional Tillage

No-Till 10-years

3-Year Rotation

Rotation	1	2	3	4	5	6	7	8	9	10	11	12
	CT Control	NT Control	Rye	Vetch	Kitchen Sink Mix	NT Control	Vetch/ Rye	NT Control	Diverse Mix 1	Diverse Mix 2	Diverse Mix 3	Perennial
Winter 1/4			Rye	Vetch	Kitchen Sink		Vetch		Residue Maker	N Fixer	Wheat	
Summer 1/4	Corn	Corn	Corn	Corn	Corn	Corn	Corn	Corn	Soybean	Sumer Mix	Summer Mix	
Winter 2/5			Rye	Vetch	Kitchen Sink		Rye	Wheat	Wheat	Residue Maker	N Fixer	Perennial Mix
Summer 2/5	Corn	Corn	Corn	Corn	Corn	Soybean	Soy bean	Soybean	Sumer Mix	Soybean	Summer Mix	
Winter 3/6			Rye	Vetch	Kitchen Sink		Vetch		N Cyclone	Late Bloomers	N Fixer Upper	
Summer 3/6	Corn	Corn	Corn	Corn	Corn	Corn	Corn	Corn	Corn	Corn	Corn	Corn

Successes

- ➤ Can provide ample biomass if desiccation is delayed and still have good corn yield (3,000 to 8,000 lbs aerial dry matter/acre plus, depending on species and mixes).
- ➢Increased soil moisture for corn planting if desiccation is delayed.
- > Reduced penetrometer pressure readings.
- >After 3 years, legumes within the system can provide significant fertility, N cycling, & sulfur mining.

Problems

- ➤ Difficult to get many species planted timely in the fall. Brassicas are especially hard.
- ➤ Difficult to plant anything behind soybean and soybean is one of the greatest acreage crops.
- ➤ While many species winter kill (spring oat, tillage radish), we cannot count on consistent killing for management.

Problems (cont.)

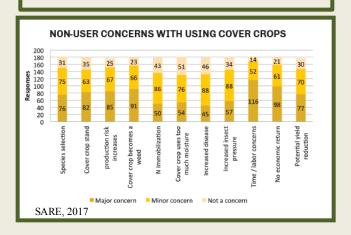
- ➤ Planting mixes can be difficult due to seed size variation. Seeds can be too deep or too shallow.
- ➤ Planting in high-residue is really difficult even for experienced no-till farmers
- ►Insect damage to corn can quickly result (i.e. stinkbugs with flowering cover crops brassicas).

Southern Cover Crops Council

- 1. Identify a common set of biological & economic measures to be applied across crop and cover crop combinations to generate a region-wide database.
- 2. Select/evaluate summer & winter cover crop germplasm for regional adaptability and determine the appropriate planting time, seeding rates, cover crop goods, and termination time to optimize benefits without adversely affecting cash crop cycles.

Southern Cover Crops Council

- 3. Assess the influence of cover crops on soil moisture, nutrient cycling, and soil microbiology.
- 4. Characterize cover crop efficacy for enhancing cropping system resilience to weeds, pests, and plant pathogens.
- 5. Generate an economic database that researchers, technical advisors, and farmers can use to assess short & long-term economic outcomes of cover crop use.



Thank you! Questions?

Challenges with cover crop use

- Timing (establishment and termination)
- Seeding costs
- Equipment investments
- Lack of regionally adapted cultivars

