2022 NCR-SARE GRADUATE STUDENT GRANT PROJECTS RECOMMENDED FOR FUNDING									
Project #	Title	Graduate Student	Major Professor	Primary Grantee	State	\$\$ Amt	Cumulative		
GNC22-340	Exploring the Effects of Prairie Restoration Management on Soil Microbial Carbon Storage	Ellen Badger Hanson	Kathryn Docherty	Western Michigan University	MI	\$ 14,997	\$ 14,997	This project aims managing prairie landscapes (ex. (carbon storage b seed mix richnes cycling and what stores.	
GNC22-341	Finding common ground: Identifying barriers to sustainable agriculture transitions among Upper Midwest row crop farmers	Ashley Becker	Randall Jackson	University of Wisconsin-Madison	WI	\$ 14,740	\$ 29,737	More perennial resilient, profita we need to iden among row crop learn from farm can more effecti system.	
GNC22-342	Identifying Factors that Influence Farmer and Rancher Decisions to Adopt and Manage Agroforestry Systems	Maxwell Benning	Dean Current	University of Minnesota	MN	\$ 14,768	\$ 44,505	This project will environmental, constrain and fa among Midwest aims to increase outreach with pr professionals.	
GNC22-343	SustaiN: A Decision Support System for Sustainable Nitrogen Management in Corn and Sorghum using Satellite Remote Sensing	Sourav Bhadra	Vasit Sagan	Saint Louis University	MO	\$ 14,966		SustaiN is an eff management in to know how mu maximize yield a in a larger region production prac profitability.	
GNC22-344	Mapping the current extent and suitability of agroforestry in the US Midwest	Sarah Castle	Richard Brazee	University of Illinois Urbana- Champaign	IL	\$ 14,938	\$ 74,409	This project will extent of agrofo machine-learnin as estimate the the region using datasets to gene policy.	
GNC22-345	Supporting Climate Dialogue in Agricultural Communities: Artistic Strategies for Engagement	Vivian Cook	Monica Haddad	Iowa State University	IA	\$ 14,991	\$ 89,400	This project expl to facilitate clim region farming c include a podcas Iowa farmers an arts-based clima	

Brief Description

ims to inform best practices for irie restorations in agricultural x. CRP plantings) for maximum soil ge by considering how prairie size and ness influence soil microbial carbon hat this means for total soil carbon

ial pastures are needed to create a itable agricultural system. However, entify barriers to this transition rop farmers. We will engage with and mers in Iowa and Wisconsin, so we ectively transform our agricultural

vill identify the economic, al, social, and political factors that facilitate agroforestry adoption est farmers and ranchers. This project ase agroforestry adoption through a producers and natural resource

effort to enable efficient nitrogen (N) in corn and sorghum. It helps farmers much in-season N is required to d and minimize N loss. Such practice tion will ensure sustainable crop ractices and improved farmer

vill develop a map of the current oforestry in the Midwest using ning to classify NAIP imagery as well ne potential to expand agroforestry in ng biophysical and social-economic enerate suitability maps and inform

xplores the use of artistic strategies imate dialogue in North Central g communities. Project outputs cast series featuring interviews with and artists who have experience with mate communication methods.

	Integrating Fall- and Spring-Planted Cover Crops for Weed Suppression	Sachin Dhanda	Vipan Kumar Augustine Obour	Kansas State University	KS	\$ 14,996	\$ 104,396	This project will regarding the vi
	in semiarid Central Great Plains		Augustine Obour					weed suppression Plains. Improved fall- and spring-p
								managing herbid
	Transition of Wooded Paddocks to Woodland Silvopasture for Integration into Rotational Grazing System	Kendra Esparza-Harris	Ashley Conway	University of Missouri-Columbia	MO	\$ 14,983	\$ 119,379	Through develop the intentional a livestock in woo maximize forage performance co with advisement landowners.
	Does Community Well-Being Matter in Landscape Management of U.S. Farming Systems?	Jean Ribert Francois	Katherine Nelson	Kansas State University	KS	\$ 14,510	\$ 133,889	This project will produce a deepe farmers integrat decision-making is perceived to in well-being.
	Gender, Sexuality, and Social Sustainability: Exploring Queer Farmers' Relationships, Ethics, and Practices in the Midwest	Taylor Hartson	Elizabeth McClintock	University of Notre Dame	IN	\$ 14,972	\$ 148,861	This project aims sexualized expen agriculture affect ethics, and pract study based on i fieldwork with L
	Biological Soil Health and Water Quality in Sustainable Agroecosystems	Christopher McNabb	Ryan Winston	The Ohio State University	ОН	\$ 14,912	\$ 163,773	This project exp soil health pract impacts on soil b
	Characterization and Description of Alternative Pig Farms in Minnesota	Miranda Medrano	Cesar Corzo	University of Minnesota	MN	\$ 14,934	\$ 178,707	Characterization farms (e.g. niche regenerative, hu purebred) incluo marketing pract Minnesota.
	Expanding the Technical Food Safety Capacity of Small and Very Small Meat Processors in Kansas through Food Safety Program Development Workshops	Ellen Mendez	Jessie Vipham	Kansas State University	KS	14,594	\$ 193,301	This project aim: technical capacit processors in Ka workshops that of food safety pr requirements.
	Early Prediction of Heat Stress in Dairy Cattle Using Artificial Intelligence for Sustainable Livestock	Omkar Chandrakant Prabhune	Younghyun Kim	University of Wisconsin-Madison	WI	\$ 14,993	\$ 208,294	The project aims the early predict We propose to o that monitors th real-time using v heat stress early

vill generate quantitative data viability of integrating cover crops for ssion in the semiarid Central Great ved knowledge on the effectiveness of g-planted cover crops will help in bicide-resistant weeds in the region.

elopment of a woodland silvopasture, al and integrated management of ooded areas, the project aims to age production and increase livestock compared to an open grazing system, ent from livestock producers and

vill use interview and survey data to eper understanding of the way rate community well-being into their ing process and how this integration o influence community and farmer

ims to answer how gendered and periences within sustainable fect queer farmers' relationships, actices. This work will be a qualitative on interviews and ethnographic n LGBTQ farmers.

xplores the co-benefits of long-term actices (SHPs) and their potential il biology and water quality.

ion and description of alternative pig che, organic, pasture-raised, humane-certified, heritage/heirloom, luding production, management, actices, and pig health outcomes in

ims to improve the food safety acity of small and very small meat Kansas through lectures and at will enhance their understanding programs and regulatory

ms to use Artificial Intelligence for diction of heat stress in dairy cattle. o develop a computer vision system the behavior of individual cattle in g video input from the barn to detect orly for sustainable livestock.

Field-Scale Evaluation of Corn Response to Nitrogen Fertilizer Application Timing following a Rye Cover Crop	Riley Seavers	Daniel Quinn	Purdue University	IN	\$ 14,740	\$ 223,034	Large-scale field growth, yield, nu responses to var application strat
Maintaining Kernza intermediate wheatgrass grain yields overtime in organic and conventional systems in WI	Erica Shoenberger	Valentin Picasso	University of Wisconsin-Madison	WI	\$ 15,000	\$ 238,034	This project seel concern, Kernza To address this o stands on two fa using organic an intraspecific con
Cover Crop Biomass Removal Rates to Optimize Livestock Production and Soil Health in No-Tillage Dryland Cropping Systems	Logan Simon	Augustine Obour	Kansas State University	KS	\$ 14,845	\$ 252,879	This study will de crop biomass re farm profits and dryland cropping properties unde removal rates (0 grazing cattle.
The Impact of Buckwheat Plantings on Releases of Parasitoid Wasps on a Dairy Farm	Elizabeth Taylor	Bethia King	Northern Illinois University	IL	\$ 14,229	\$ 267,108	This project aim buckwheat plan house flies on a and engage a loo about integrated in creating outre
Investigating the Biology of False Blossom Phytoplasma and its Leafhopper Vector to Inform Integrated Pest Management Approaches for Cranberry Growers	Casey Trickle	Christelle Guédot	University of Wisconsin-Madison	WI	\$ 14,658	\$ 281,766	We will assess th CFBD phytoplasi phenology of its Additionally, we feeding injury no during different
Testing the potential of distilling as an alternative use for DON- contaminated wheat	Jiaying Wu	Matthew Stasiewicz	University of Illinois Urbana- Champaign	IL	\$ 14,764	\$ 296,530	The project aims Region find a hig contaminated w
Recovering the lost nutrients from subsurface drainage systems towards agricultural sustainability	Hongxu Zhou	Rabin Bhattarai	University of Illinois Urbana- Champaign	IL	\$ 14,844	\$	This project is pr from agricultura Illinois and recov releasing fertilize tile nutrients rer be applied to far

eld research trial evaluating corn nutrient uptake, and physiological various in-season nitrogen fertilizer rategies following a rye cover crop.

eeks to address a major farmer iza IWG grain yield decline overtime. is concern, established Kernza IWG o farms in Wisconsin will be thinned and conventional practices to reduce competition to maintain grain yield.

l determine optimum rates of cover removal with grazing to optimize nd enhanced soil health in no-tillage sing systems by quantifying soil der a range of cover crop biomass is (0 to 90% biomass removal) with

ims to determine the impact of antings on rates of parasitism of a dairy facility in Northern Illinois local agriculture class in learning ted pest management strategies and treach materials.

s the spatiotemporal patterns of the asma, as well as the seasonal its insect vector, Limotettix vaccinii. well will quantify the amount of noted on cranberry plants by BNLH nt life stages and at abundances.

ms to help farmers in North Central high-value use for deoxynivalenolwheat, as input for distilling. proposed to reduce nutrients loss ural subsurface drainage systems in cover the lost nutrients as slowilizers for crop growth. Novel end-ofremoval-to-recovery (R2) systems will farms with tile drainage.