Strategies for Growing without Irrigation in Western Oregon

Amy Garrett
Small Farms Program
OSU Extension Service
Introduction

- Cropping options on land without water?
- Climate change
 - reduced snowmelt
 - increased temperatures
 - drought
- Vegetable growers using surface water for irrigation were cut off early during the 2015 growing season - Some as early as June!
- Many new farmers have trouble finding land with unrestricted irrigation rights
- Water is expensive!
Adapting to a Changing Climate: Conserving Water with Dry Farming Management Practices

https://youtu.be/FRjDf7x9Tro
What is dry farming?

- Crop production during a dry season like summers in the Willamette Valley in Oregon and Northern California
- Utilizes the residual moisture in the soil from the rainy season instead of depending on irrigation.
Warm-summer Mediterranean Climate

[Map showing distribution of warm-summer Mediterranean Climate zones around the world]
Resources

Steve Solomon
- *Growing Vegetables West of the Cascades*
- *Water-Wise Vegetables*
- *Gardening Without Irrigation: or without much anyway*
- *Gardening when it counts*

Carol Deppe
- *The Resilient Gardener*

David Granatstein
- *Dryland Farming in the Pacific Northwest*

California Ag Water Stewardship Initiative

Widtsoe, John. 1920
The Dry Farming Project

- Work to date
 - Case studies
 - Western Oregon
 - Northern California
 - Demonstration
 - Field Day
 - Sensory Evaluation
 - Preliminary Yield Data
 - Grant funding
 - Expand Demonstration
 - *Growing Resilience: Water Management Workshop Series*
 - Participatory Climate Adaptation Research
 - *Dry Farming Collaborative*
How Does Dry Farming Work?

- Starts with the soil!
 - Water-holding capacity
 - Clay
 - Organic matter - For each 1% increase in soil organic matter, soil water storage can increase by 16,500 gallons per acre-foot of applied water!
 - 4’ of soil or more (Solomon)

- Site selection
 - Plants as indicators
 - Web Soil Survey
 - Soil auger

128B—Veneta loam, 0 to 7 percent slopes

Map Unit Setting
- National map unit symbol: 234m
- Elevation: 300 to 800 feet
- Mean annual precipitation: 40 to 60 inches
- Mean annual air temperature: 52 to 54 degrees F
- Frost-free period: 165 to 210 days
- Farmland classification: All areas are prime farmland

Typical profile
- H1 - 0 to 14 inches: loam
- H2 - 14 to 39 inches: clay loam
- H3 - 39 to 60 inches: clay

Properties and qualities
- Slope: 0 to 7 percent
- Depth to restrictive feature: More than 80 inches
- Natural drainage class: Moderately well drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: About 36 to 72 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: High (about 10.3 inches)
How Does Dry Farming Work?

- Soil preparation
 - Timing
- Planting technique
 - Plant when and where there is moisture
 - Increased plant spacing
 - Pressing soil around seed or transplant
 - Good seed soil contact
 - Creates capillary action wicking moisture to the surface to help seed germinate and get established
 - Pre-soaking seed (Deppe)
- Surface protection
 - Mulching – ‘dirt or dust mulch’ most common on small commercial farms
Sand
Poor Capillarity

Clay; Sandy/Silt Loams
Good Capillarity

By Moria Peters
Crop/Variety Selection

- Tomatoes
- Potatoes
- Watermelons
- Cantaloupes
- Winter squash
- Zucchini
- Dry Beans
- Corn
- Orchard crops
- Grapes
June 3, 2016
July 6, 2016
August 10, 2016
‘Dark Star’ Zucchini

Corvallis, OR

New Moon Organics - Shively, Ca

August 18, 2015

July 6, 2015

July 15, 2015

July 27, 2015

September 25, 2015
Gathering Together Farm
2016 Dry Farm Trial
<table>
<thead>
<tr>
<th>Soil</th>
<th>Native Productivity</th>
<th>Amendments</th>
<th>Drainage</th>
<th>Irrigation</th>
<th>Max Dry</th>
<th>Max Irrigated</th>
<th>Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapman</td>
<td>69</td>
<td>+9</td>
<td>0</td>
<td>24</td>
<td>76</td>
<td>100</td>
<td>Harcombe Farm</td>
</tr>
<tr>
<td>Chehalis</td>
<td>72</td>
<td>+5</td>
<td>0</td>
<td>+20</td>
<td>77</td>
<td>97</td>
<td>Gales Meadow Farm</td>
</tr>
<tr>
<td>Coburg</td>
<td>60</td>
<td>+5</td>
<td>+8</td>
<td>+20</td>
<td>73</td>
<td>93</td>
<td>Gathering Together Farm</td>
</tr>
<tr>
<td>Dayton</td>
<td>10</td>
<td>+22</td>
<td>+4</td>
<td>+27</td>
<td>36</td>
<td>63</td>
<td>Oak Creek</td>
</tr>
<tr>
<td>Helvetia</td>
<td>57</td>
<td>+5</td>
<td>+8</td>
<td>+20</td>
<td>70</td>
<td>90</td>
<td>Berry Lost</td>
</tr>
<tr>
<td>Latourell</td>
<td>70</td>
<td>+10</td>
<td>0</td>
<td>+20</td>
<td>80</td>
<td>100</td>
<td>North Willamette</td>
</tr>
<tr>
<td>McBee</td>
<td>55</td>
<td>+5</td>
<td>+9</td>
<td>+20</td>
<td>72</td>
<td>92</td>
<td>Gales Meadow Farm</td>
</tr>
<tr>
<td>Quatama</td>
<td>65</td>
<td>+5</td>
<td>+9</td>
<td>+20</td>
<td>79</td>
<td>99</td>
<td>North Willamette</td>
</tr>
<tr>
<td>Redbell</td>
<td>55</td>
<td>+5</td>
<td>+18</td>
<td>+20</td>
<td>73</td>
<td>93</td>
<td>Gathering Together Farm</td>
</tr>
<tr>
<td>Willamette</td>
<td>75</td>
<td>+5</td>
<td>0</td>
<td>+20</td>
<td>80</td>
<td>100</td>
<td>Oak Creek</td>
</tr>
<tr>
<td>Woodburn</td>
<td>65</td>
<td>+5</td>
<td>+8</td>
<td>+16</td>
<td>78</td>
<td>94</td>
<td>Oak Creek, Gowan Farm</td>
</tr>
</tbody>
</table>

(Huddleston EC 1105)
Andy Gallagher – Red Hill Soils
Tomato Yield

Selected Sites

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Native Prod.</th>
<th>Max Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coburg Redbell</td>
<td>60 55</td>
<td>73 73</td>
</tr>
<tr>
<td>Latourell Quatama</td>
<td>70 65</td>
<td>80 79</td>
</tr>
<tr>
<td>Willamette Woodburn</td>
<td>75 65</td>
<td>80 78</td>
</tr>
</tbody>
</table>

Graph

- **Y-axis**: lb per ac
- **X-axis**: Variety
- **Legend**:
 - Treatment: Dry Farm, Biochar, Low Irrigation, Irrigated

AnOvation Group LLC
Dry Farming Collaborative

Group of growers, extension educators, plant breeders, and agricultural professionals partnering to increase knowledge and awareness of dry farming management practices with a hands-on participatory approach.
Dry Farming Collaborative

- 30 Trial Hosts
- Communication
 - Facebook Group (450+ members)
 - Email list (120+ members)
- Data Collection
 - Soil testing (5’ cores)
 - Soil moisture monitoring
 - Yield
 - Sensory Evaluation
- Events
 - Winter Meeting
 - Field Days
 - Tasting events
 - Conference presentations
2017 Dry Farming Collaborative
Replicated Variety Trials

- Farmer selected varieties
 - 5-8 varieties of each crop
 - Up to 20 replications of each crop across sites
- Mother – Daughter trial design
- Farmers designed replication size and protocol
- Intention to be inclusive of growers on different scales
2017 -2018 DFC Replicated Variety Trials

- **Tomatoes**: Early Girl, Dirty Girl, Stupice, Big Beef, Perfect Rogue, Cour di Bue
- **Winter Squash**: Stella Blue, Winter Sweet, Hidatsa, Zeppelin Delicata, Lower Salmon River, Little Gem
- **Zucchini**: Dark Star, Costata Romanesco, Goldini Zucchini, Rugosa Friulana, Genovese
- **Melon**: Eel River, Christmas Watermelon, Desert King Watermelon, Rich Sweetness, Sweet Freckles, Piel de Sappo
- **Beans**: Volga German, Whipple, Early Warwick, Beefy Resilient Grex
- **Corn**: Papas Red, Open Oak Party Mix Dent Corn, Magic Manna, Cascade Ruby Gold, Painted Mountain
Mother – Daughter Trial Design

<table>
<thead>
<tr>
<th>Tomato</th>
<th>Melon</th>
<th>Winter Squash</th>
<th>Zucchini</th>
<th>Dry Beans</th>
<th>Corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>E</td>
<td>S</td>
<td>P</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td>PR</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>R</td>
</tr>
<tr>
<td>EG</td>
<td>B</td>
<td>D</td>
<td>S</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>EG</td>
<td>D</td>
<td>M</td>
<td>R</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>EG</td>
<td>B</td>
<td>K</td>
<td>R</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td>B</td>
<td>S</td>
<td>X</td>
<td>R</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>D</td>
<td>S</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>G</td>
<td>S</td>
<td>F</td>
<td>O</td>
<td>B</td>
</tr>
</tbody>
</table>

1 rep = 100 sq ft
Or ~10 sq meters
5 farms collected yield data on 11 tomato varieties

Unbalanced design – difficult to fit to a statistical model
 • Not all farms grew all varieties

Statistical analysis
 • Random effects
 • Genotype x environment
 • Fixed effects
 • Plant Density (p=0.14)
 • Results suggest density effect of about 3 lb/plant, density range was from 870-2700 plants/ac
 • Available Water-Holding Capacity (p=0.06)
 • Results suggest an extra inch of water holding capacity in the soil is worth a couplet thousand lbs per acre of yield
Density Effect, Last Year's Rain, Big Beef Tomato

\[\text{lm(lb.per.ac} \sim -1 + \text{NPlants.per.ac}; \text{p-value} = 0.00044 \]
2017 Oak Creek Tomato Yield per Plant (lbs)
Harvest 8/7 - 9/16
Dry Farming Project

Next Steps.....

• Developing Dry Farming page on OSU Small Farms website to be a resource hub for dry farming in our region

• Initiate dry farming extension publication series (release will begin in late 2018)
 • Intro to Dry Farming
 • Site assessment and selection
 • Soil moisture monitoring on 33 farms in 2018
 • Case studies
 • Variety Trial Report

• Continue to build network of growers
 • Collaborative learning
 • Participatory research
 • Expand our drought mitigation toolbox
Topics of Interest

- Participatory Plant Breeding for Dry Farmed Systems
 - Beefy Resilient Grex – Carol Deppe (cross between Black Mitla tepary and Gaucho common bean)
- Dry Farmed Orchard Systems
- Hugelkultur
- Different types of mulching
 - Deep straw
 - Wood chips
 - Weed fabric
- Others?
For more info visit:
http://smallfarms.oregonstate.edu/dry-farm/dry-farming-project

Join the Dry Farming Collaborative group on Facebook

Amy Garrett
Small Farms Program
OSU Extension Service
Amy.garrett@oregonstate.edu

Co-creating the future of how we manage water on our farms