Adjusting nutrient management when using cover crops

Matt Ruark, UW-Madison & UW-Extension
Jaimie West, UW-Madison
Multi-site and multi-year research is underway to evaluate cover crops as funded by the WI Fertilizer Research Council.

Objectives:

• Evaluate growth of fall seeded cover crops and their effect on soil nitrate
  • post corn silage harvest and manure application
  • no-till

• Determine yield and optimal N rate for corn following different cover crops
Research was conducted at UW Agricultural Research Stations

- **Arlington, South Central WI**
  - Plano silt loam
  - Very deep, well drained

- **Marshfield, North-central WI**
  - Withee silt loam
  - Somewhat poorly drained

- **Lancaster, SW “Driftless” WI**
  - Fayette silt loam
  - Well-drained
  - 2-6% slopes; moderately eroded
Evaluating cover crops following corn silage harvest and fall manure application

Four treatments:

• No cover crop
• Spring Barley (71-140 lb/ac)
• Winter rye (75-120 lb/ac) – terminated in spring
• Triticale (69-173 lb/ac)
  • Harvested as a forage crop
Evaluate the effects of cover crops on key parts of the production system

• Fall erosion control – how well does it grow and cover?
• Fall soil nitrate – how much less nitrate was potentially leached?
• Presidedress nitrate test – did the cover crop take away from this estimate of the manure N credit?
• Yield – were the covers a benefit or cause a drag?
• Response to N – is more or less N required to achieve optimal yields?
All fall manure is not alike.
Cover crop growth
Fall growth of cover crop ranges from minimal to excessive.

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Fall’14</th>
<th>Date</th>
<th>Fall’15</th>
<th>Date</th>
<th>Fall’16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ton/ac</td>
<td></td>
<td>ton/ac</td>
<td></td>
<td>ton/ac</td>
</tr>
<tr>
<td>ARL</td>
<td>9/18</td>
<td>0.30</td>
<td>9/23</td>
<td>0.40</td>
<td>9/15</td>
<td>0.92</td>
</tr>
<tr>
<td>Rye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.39</td>
<td></td>
<td>0.37</td>
<td></td>
<td>1.06</td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticale</td>
<td>0.44</td>
<td></td>
<td>0.36</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/29</td>
<td>0.15</td>
<td>9/23</td>
<td>0.62</td>
<td>9/27</td>
<td>0.44</td>
</tr>
<tr>
<td>LAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td></td>
<td>0.98</td>
<td></td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticale</td>
<td>0.19</td>
<td></td>
<td>0.86</td>
<td></td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/21</td>
<td>0.37</td>
<td></td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticale</td>
<td>0.25</td>
<td></td>
<td>0.25</td>
<td></td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>
November 13, 2014

Lancaster ARS

1/8 ton DM biomass
November 14, 2014

Arlington ARS

1/3 ton DM biomass
November 16, 2016

Marshfield ARS

\( \frac{3}{4} \) to 1 ton DM biomass
Fall Soil nitrate
One-third of a ton of biomass can lead to a decrease of 25 lb-N/ac in the upper 2’ of soil

<table>
<thead>
<tr>
<th>Site</th>
<th>Cover</th>
<th>DM</th>
<th>Fall 2014 nitrate-N reduction</th>
<th>DM</th>
<th>Fall 2015 nitrate-N reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ton/ac</td>
<td>lb-N/ac</td>
<td>ton/ac</td>
<td>lb-N/ac</td>
</tr>
<tr>
<td>ARL</td>
<td>Rye</td>
<td>1/3</td>
<td>19</td>
<td>1/3</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Barley</td>
<td></td>
<td>23</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Triticale</td>
<td></td>
<td>25</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>LAN</td>
<td>Rye</td>
<td>1/8</td>
<td>6</td>
<td>3/4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Barley</td>
<td></td>
<td>8</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Triticale</td>
<td></td>
<td>5</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>MAR</td>
<td>Rye</td>
<td>1/4</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Triticale</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Manure nitrogen credits
Cover crops wipe out some of the manure N credit based on PSNT

<table>
<thead>
<tr>
<th></th>
<th>ARL ppm</th>
<th>ARL N credit</th>
<th>LAN ppm</th>
<th>LAN N credit</th>
<th>MAR ppm</th>
<th>MAR N credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>14</td>
<td>35</td>
<td>13</td>
<td>35</td>
<td>16</td>
<td>60</td>
</tr>
<tr>
<td>Barley</td>
<td>18</td>
<td>100</td>
<td>16</td>
<td>60</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Rye</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Triticale</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Yields
Yield drag flowing covers, although with spring barley can be reduced with more N.

Arlington ARS

<table>
<thead>
<tr>
<th>Nitrogen Rate (lb-N/ac)</th>
<th>Corn Yield (bu/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>150</td>
<td>Winter Rye (1.5 ton DM/ac)</td>
</tr>
<tr>
<td>200</td>
<td>Spring Barley (0.75 ton DM/ac)</td>
</tr>
</tbody>
</table>

10 bu/ac
17 bu/ac
Flat responses at LAN, but still yield drag with spring barley. Larger yield drag (+30 bu/ac) with winter rye.
Same trend at MAR with small yield drag with barley, larger drag with rye.
No yield drag, but different optimum N rate for winter rye (Lancaster 2015)

![Graph showing the relationship between nitrogen rate and yield for no cover and winter rye. The graph includes two lines: one for no cover with an R^2 value of 0.97 and another for winter rye with an R^2 value of 0.99. The x-axis represents nitrogen rate (lb-N/ac), and the y-axis represents yield (bu/ac).]
No statistical difference in yields among no cover and winter-killed covers (Arlington 2015)
Corn

Average Yield Difference of the 50 trials displayed: \textbf{0.0} bu/acre.

90\% Confidence Interval for the Average Yield Difference: from \textbf{-1.0} to \textbf{1.0} bu/acre.

Soybean

Average Yield Difference of the 12 trials displayed: \textbf{0.2} bu/acre.

90\% Confidence Interval for the Average Yield Difference: from \textbf{-0.6} to \textbf{1.0} bu/acre.
**Figure 2.** Trends with respect to cover crop effect on corn yields at 28 site-years from 2009 to 2014.

**Figure 3.** Trends with respect to cover crop effect on soybean yields at 18 site-years from 2009 to 2013.
2013 Corn Yields
Washington County, WI
No-till corn following winter wheat
Yield response from Janesville in 2010 shows a 46 lb-N/ac N credit from red clover (plus yield gains)
What nutrient management adjustments should I make when using cover crops

• With grass cover crops –
  • Use nitrogen in starter fertilizer
  • Don’t expect residual soil nitrate (i.e. no PPNT credit)
  • If excessive growth, reduce the N credit you are taking with fall applied manure (how much – I don’t know yet)

• With radish –
  • No change

• With legumes –
  • Can take a 40 to 60 pound N credit with good growth
Questions?
Comments?
Concerns?
Grasses

Winter rye (or cereal rye)
Annual ryegrass
Oat
Barley
Triticale

- Establish and grow quickly
- Scavenge soil nitrogen
- High C:N ratio
Brassicas

Radish
Mustard
Turnip

- Slower to establish
- Scavenge soil nitrogen (even more than the grasses if given enough time)
- Medium C:N ratio
Legumes

Red Clover
Berseem Clover
Crimson Clover
Hairy Vetch

• Slower to establish
• Fix N from atmosphere
• Low C:N ratio