Cover Crops and Phosphorus Speciation in Ohio

Why so much SRP in Surface Water?

Dr. K. Rafiq Islam, Research Scientist & Alan Sundermeier, Associate Professor Jim Hoorman, Assistant Professor, Agriculture and Natural Resources hoorman.1@osu.edu

10/09/11 Image Lake Erie

July, 2011

Source:http://www.glerl.noaa.gov/res/Centers/HABS/graphics/wle_hab2_%20072211.jpg

Grand Lake St. Marys 2010

Bringing Knowledge to Life

Source: Hiedelberg University

Phosphorus in Crop Production

Phosphorus Losses to the Environment

P stabilizes the OM and forms a bridge to the clay. Our current P use efficiency is 10-25-50%.

Phosphorus Speication: How Soil P is tied up

Microbial – P_o

P_o-Organic P

Soluble Reactive (SRP) P_i P_i-Inorganic P

Exchangeable (EP) P_o Active Carbon

• Ca²⁺/Mg ²⁺

Calcium/Magnesium

• Fe^{3+}/AI^{3+}

Iron/Aluminum

Res P_o

Residual P_o-Humus

Total P

$$= AII P_o + AII P_i$$

Murphy & Riley Standard P Extraction(1962)

Phosphorus Speciation

Oxidized State

Reduced State

Iron (III) - Fe³⁺ (Ferric Fe)

Yellow-Red

Iron (II) - Fe²⁺ (Ferrous Fe)

Yellow-Grey

Manganese – MN⁴⁺

Pinkish Color

Manganese - MN²⁺

Grey-Black

Copper – Cu³⁺

Light Blue

Copper - Cu²⁺

Green

SRP in Surface Water

Two Key factors:

- a) Soil P concentration
- b) Transport Factor

Soil P concentration

- * Transport Factor
- = Pounds of P Lost to Surface Water

Cover Crops versus Control

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops					
0.34b	1.23a	21.2a	25.7a	147.7b	196.1b
	8.8X				
Control					
1.42a	0.14b	18.0b	27.1b	162.8a	209.5a
4.2X				1.1X	1.07

Cover crops had significantly lower soil concentration of P in the SRP (4.2x less), Res P, and Total P but much higher EP (8.8X), CaP, and FeP.

Bringing Knowledge to Life

Cover Crops vs Control Stratification

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops					
0.4b	61.7a	1.6a	1.4a	1.5b	2.0a
	9.1X				1.25X
Control					
1.8a	6.8b	1.4a	1.4a	1.6a	1.6b
4.5X					

Cover crops (Red clover) had significantly lower soil stratification of P in the SRP fraction but significantly higher EP and TP fractions.

Bringing Knowledge to Life

Long Term No-Till vs. Rotational Tillage

Both Fields are a Corn/Soybean Rotation

These pictures are of a newly emerging corn crop

NoTill soybeans then StripTill Corn NoTill Soybeans then Tilled corn

Bulk Density and Compaction

Benefits of Cover Crops

- Increase water infiltration Move SRP_i down into soil profile.
- Decrease bulk density and increase pore space for both air and water – Less saturated soils.
- Increase soil organic matter content which improves soil structure and holds P tighter SRP_i< EP_o and FeP_i< Res P_o

N0-TILL creates macropores

ECO Farming & live roots acts like a biological valve to absorb N and P.

Managing plant roots affects nutrient recycling

Additional Facts about FeP

- FeP_i Mediated or changed by soil microbes (Hedley, 1982)
- FeP_i can be reservoir of P when soil P is low (Kuo, 2003; Zhang 1997) and is considered to be plant available (Zhang, 1997).
- At high fertilization, SRP_i can easily be converted to FeP_i (Kuo, 2003; Zhang, 1997).

Cover Crops and Phosphorus Speciation in Ohio

Why so much SRP in Surface Water?

Dr. K. Rafiq Islam, Research Scientist & Alan Sundermeier, Associate Professor Jim Hoorman, Assistant Professor, Agriculture and Natural Resources hoorman.1@osu.edu

