Five field trials were conducted on four islands in Hawai‘i to evaluate management practices for green manure crops. Overall, initial populations of root-knot nematodes were low and barely at the level of detection in several field trials, particularly on the islands of Moloka‘i and Maui. No significant differences due to green manure treatments were found for subsequent taro yields in two field trials on Moloka‘i and O‘ahu.

On the island of Hawai‘i, when root-knot nematodes were present in the soil at the start of the field trial, growth of green manures for 2.5 or 4 months had a beneficial effect on the individual fresh corm weight of the subsequent crop of taro. This beneficial effect could be due to: a) lower initial numbers of root-knot nematodes; b) lower numbers of nematode populations; and c) greater exchangeable potassium (K) in both soil and taro leaves, perhaps caused by slow release of nutrients during decomposition of green manure crops.

In contrast, on Maui, taro grown after nematode-susceptible buckwheat (Fagopyrum esculentum) had smaller corms in comparison with taro grown after nematode-resistant sunn hemp.

In a preliminary field trial, sunn hemp (Crotalaria juncea) was found to be another promising green manure crop, because it fixes nitrogen, has a low-host status for nematode-meloidogyne (Jones/reniformis), and produces good biomass accumulation.

Five field trials were conducted on four islands in Hawai‘i to evaluate management practices for green manure crops. Overall, initial populations of root-knot nematodes were low and barely at the level of detection in several field trials, particularly on the islands of Moloka‘i and Maui. No significant differences due to green manure treatments were found for subsequent taro yields in two field trials on Moloka‘i and O‘ahu.

On the island of Hawai‘i, when root-knot nematodes were present in the soil at the start of the field trial, growth of green manures for 2.5 or 4 months had a beneficial effect on the individual fresh corm weight of the subsequent crop of taro. This beneficial effect could be due to: a) lower initial numbers of root-knot nematodes; b) lower numbers of nematode populations; and c) greater exchangeable potassium (K) in both soil and taro leaves, perhaps caused by slow release of nutrients during decomposition of green manure crops.

In contrast, on Maui, taro grown after nematode-susceptible buckwheat (Fagopyrum esculentum) had smaller corms in comparison with taro grown after nematode-resistant sunn hemp.

In a preliminary field trial, sunn hemp (Crotalaria juncea) was found to be another promising green manure crop, because it fixes nitrogen, has a low-host status for nematode-meloidogyne (Jones/reniformis), and produces good biomass accumulation.

In a preliminary field trial, sunn hemp (Crotalaria juncea) was found to be another promising green manure crop, because it fixes nitrogen, has a low-host status for nematode-meloidogyne (Jones/reniformis), and produces good biomass accumulation.

In a preliminary field trial, sunn hemp (Crotalaria juncea) was found to be another promising green manure crop, because it fixes nitrogen, has a low-host status for nematode-meloidogyne (Jones/reniformis), and produces good biomass accumulation.