Cover Crops for All Seasons Expanding the cover crop tool box for organic vegetable producers Mark Schonbeck and Ron Morse Virginia Association for Biological Farming Information Sheet http://www.vabf.org/pubs.php Number 3-06 05/15/06 Organic farmers and gardeners have striven for decades to maximize the health of the soils they cultivate. Meanwhile, soil scientists have identified three key factors in soil organic matter balance and soil quality: tillage, biomass input, and soil erosion. They recommend: - reduce intensity and frequency of tillage - grow cover crops to: - maximize biomass - optimize nitrogen (N) dynamics - minimize bare-soil periods - eliminate erosion Studies have shown dramatic increases in active and total soil organic matter under continuous no-tillage systems. Because these systems rely on herbicides to control competing vegetation during cash crop production, they are not suitable for organic producers. Organic agriculture has even been criticized from a soil-conservation standpoint for its heavy reliance on tillage and cultivation for weed control. However, skillful use of cover crops adds considerable biomass to the soil organic matter cycle and reduces the need for tillage and cultivation. Some cover crops can be rolled, mowed or frost-killed to allow organic no-till planting, while others require tillage or undercutting. The latter can sometimes be grown as a living mulch between beds or rows of the production crop, thus continuing to contribute biomass and protect soil. Researchers at Virginia Tech and several VABF member growers are developing and testing cover-crop based conservation tillage systems for organic vegetables, including notill vegetable planting into mechanically killed cover crops. One of the basic tenets of sustainable agriculture is that greater diversity yields greater agro-ecosystem stability, more beneficial organisms, fewer pests and diseases, more sustained crop yields, and more opportunities for farmer innovation. Thus one of our research goals is to develop a larger cover crop "toolbox" from which growers can select cover crops most suited to their regions and production systems. The table on pages 4-6 gives some basic information | Contents: | | |--|-----| | Introduction | p.1 | | Descriptions of Individual Cover Crops | p.1 | | Contact Information | p.3 | | Table of Cover Crops | p.4 | on a number of cover crops, including hardiness, planting time rates and depths, maturity date, biomass and other characteristics; and management methods. The following paragraphs on individual cover crop species are based partly on our observations and partly on decades of collective experience of growers and researchers in the southern region. Winter rye (cereal rye) is the most often used winter cover crop. It produces lots of biomass, suppresses weeds through competition and allelopathy (release of natural substances that inhibit weed germination and early growth), takes up and conserves soluble soil N, and provides support for viny legumes like vetch. It tolerates somewhat acid or low-fertility soils, and can be killed by mowing after full heading in late spring. Rye may tie up soil N if grown alone, and its allelopathy can inhibit crop seeds sown too soon after it is tilled in. Wait 3-4 weeks. Wheat and Triticale also make good, hardy winter cover crops. Generally similar to rye, they mature a little later and may be harder to mow-kill. *Barley* provides good biomass and weed suppression. It prefers light textured soils, roots fairly deeply, and tolerates drought better than other small grains. Annual ryegrass (Italian ryegrass) can be grown as a winter or summer annual. Its dense fibrous root system promotes crumb structure and stops soil erosion. It forms a lot of biomass, suppresses weeds and conserves soil N. It cannot be mow-killed and must be tilled in as green manure. Note: any seed sold as "annual rye" is ryegrass if it looks like lawn grass seed, and is winter rye if it looks like wheat berries. Hairy vetch is the best winter annual legume for cooler regions in the South, surviving freezes to -10°F. It performs well on a wide range of soils, fixes over 100 lb N per acre, and releases about half of it to the following cash crop. Other vetches include lana vetch (hardy to zone 7), and purple vetch (zone 8), which give more biomass and N than hairy vetch from spring plantings. Vetches make soil phosphorus (P) more available, and provide excellent habitat for beneficial insects that eat or parasitize insect pests. Bicultures (two-species combinations) of N-rich vetches with rye, barley or oats are often planted for maximum cover and biomass, weed suppression, and beneficial habitat. Their balanced carbon-to-nitrogen (C:N) ratio also maximizes soil organic matter formation and provides season-long, slow-release N. Crimson clover is the best winter annual legume for mild temperate climates (zones 7-8). Known for its spectacular bloom in the spring, it provides valuable beneficial habitat, weed suppression, good biomass and nitrogen fixation. Because of its lower N content (about 2-2.5%, compared to 3-4% for vetches), crimson clover residues release N more slowly than other winter legumes. It is easy to kill by mowing at full bloom and it self-seeds readily if allowed to stand more than a few days past peak bloom. Caution: crimson clover may support pest nematodes that can affect tomato and some other vegetables, in regions where these nematodes are prevalent. Other winter annual clovers with good N fixation potential include berseem clover, and subterranean clover. Austrian winter peas, hardy to zone 7, add a lot of biomass and N. Peas are viny and do best when grown with a cereal grain for support. Several other varieties of *field peas* are semi-hardy and can be planted in early spring or late summer. In the latter case, they will winterkill except in zones 8b or higher. Spring planted Austrian peas also perform well. Spring oats are semi-hardy, and are the best coolseason grass to plant in early spring or late summer with cool season legumes. Like rye, oats suppress weeds, tolerate a wide range of soils, form a lot of biomass and conserve soluble soil N. Oats are somewhat higher in N than rye and less likely to tie up soil N upon incorporation. Black oat is a close relative, grown in Brazil, and experimentally in the US. Bell bean or fava bean is a good N fixer, it also provides abundant nectar for beneficial insects, and is a good legume companion for spring oats. It does not tolerate drought or heat, so late summer plantings may not always thrive. Bell beans are smaller seeded than horticultural favas and are better suited as cover crops. Daikon, oilseed and fodder radishes are deeprooted, semi-hardy cover crops that open subsoil hardpan, scavenge and conserve soluble soil N, and choke out weeds through rapid canopy closure and strongly allelopathic root exudates. Fall-planted radish decays rapidly after winterkilling, leaving a clean, weed-free seedbed for spring vegetables. To avoid pest and disease problems, radishes should *not* be grown immediately before or after brassica vegetables. Buckwheat is the most widely available and widely grown summer annual cover crop. Its short (30-45 day) lifecycle, rapid canopy closure, and weed suppression make it ideally suited for short fallow periods during the frost-free season. Buckwheat makes soil P more available. It is also one of the best nectar sources for beneficial insects. It likes warm weather and moist soil, and does not tolerate much drought. Sudangrass and sorghum-sudan hybrids produce tremendous biomass, reaching nine feet within two to three months. Sorghum-sudan chokes out weeds through competition and strong allelopathy. When grown to about 5-6 feet, then mowed back to one foot and allowed to regrow, sorghum-sudan sends its fibrous roots deep into the subsoil to break hardpan. It tolerates heat and drought, but requires warm soil with ample N to thrive, and does well planted in alternate rows with a vigorous summer legume. Difficult to mow-kill, this crop is best planted at midsummer and allowed to winterkill ahead of spring vegetables. Various species of *millet* make good summer cover crops with high heat and drought tolerance. Foxtail, proso and Japanese millets are best suited for *early* summer (June) plantings, as later plantings produce little biomass because of daylength responses. Foxtail and proso millet are easy to mow-kill, while Japanese and browntop millet grow back readily. Pearl millet is very tall and rivals sorghum-sudan in late summer biomass production, yet is easy to kill by mowing or rolling. Millets do well with cowpeas or soybeans. Cowpea is a versatile summer legume that fixes lots of N, provides food and habitat for beneficial insects, suppresses pest nematodes, rapidly shades out weeds, and offers edible shell beans (blackeyed peas, etc.). Cowpeas are not bothered by Mexican bean beetles, Japanese beetles or deer, and are incredibly tolerant of hot, dry conditions. They require warm soil to emerge well and are not easily killed by mowing. Soybean also makes an excellent summer legume cover crop. Late maturing or forage varieties should be grown to obtain ample top growth before they set seed and die down. Soybeans are a little more cold-tolerant than cowpea and can produce more biomass and N, but are more susceptible to drought and pests. Sunnhemp (crotolaria) is a tall, stemmy tropical legume that tolerates lower soil fertility, produces lots of biomass and chokes out weeds. Lablab bean is a viny tropical legume that appears to leave a strongly allelopathic (weed-suppressing) residue after frost-kill. Both are experimental in our region. The seeds can be expensive and difficult to obtain. Yellow sweetclover is a very hardy biennial that can be planted in spring through late summer, then tilled or mow-killed early the following summer after flowering. Sweetclover has strong deep taproots that can break hardpan and make soil P more available. Annual white sweetclover is semi-hardy. Perennial clovers such as red, white and alsike clovers make good living mulches when overseeded into established cash crops, fixing N and offering beneficial habitat over winter and into the next season. Alfalfa, the "queen of forages", is drought tolerant and a superior N fixer, but it requires quite fertile soil. These legumes can also be grown with perennial grasses such as timothy, orchardgrass and perennial ryegrass, for two to four years to give intensively cultivated fields a good rest. Rotating to a grasslegume sod can restore soil organic matter levels and reduce summer annual weeds. Perennial cover crops start slowly and are often planted with a light sowing of spring oats to help them get started. The oats are mowed off at heading to allow the perennials to get established. ## **Contact Information:** Virginia Association for Biological Farming Post Office Box 1003 Lexington, Virginia 24450 www.vabf.org ## Where to Get Cover Crop Seeds: SPECIAL NOTE FOR ORGANIC GROWERS: Be sure to buy or order seeds that have not been treated with synthetic fungicides or pesticides - order early in the season while untreated seed is still available. Local farm supply stores and Southern States stores usually carry rye, oats, various clovers, buckwheat, and sometimes alfalfa, vetches, wheat, ryegrass, foxtail millet, soybean and cowpeas. Often they can special-order some cover crop seeds. Adams Briscoe Seed Company (GA), 770-775-7826, www.abseed.com. Sorghum-sudan hybrids; pearl, proso, foxtail, browntop and Japanese millets; cowpeas, high-biomass forage soybeans; lablab bean and several other warm season legumes. **Albert Lea Seed House** (MN), 800-352-5247, *www.alseed.com*. All millets, sorghum, sudangrass and sorghum-sudan hybrids; rye, oats, wheat, barley and triticale; annual and perennial ryegrass and other grasses; red, crimson, yellow sweet and other clovers and alfalfa; field peas, vetches and other legumes. Some organic seeds. **Peaceful Valley Farm Supply** (CA), 888-784-1722, *www.growingorganic.com*. Several varieties of vetch, field peas, bell beans, lablab, sunnhemp, other unusual legumes, cereal grains, annual and perennial grasses, and daikon radish. Most seeds are organic or free of synthetic chemical treatments. Plantation Seed, 800-543-4164. Black oats. **Seven Springs Farm** (VA), 540-651-3228, *www.7springsfarm.com*. Rye, winter wheat, hairy vetch, Austrian winter field peas, crimson clover, spring oats, spring barley and buckwheat. All seed untreated, most organic. Turner Seed (TX), 800.722.8616; www.turnerseed.com. Lablab bean, sunflower, forage turnip and a wide range of summer and winter annual grains, grasses, clovers and other legumes. | Cover | Crop | s for | · All S | Seas | ons. | Numb | er 3- | 06 | | | | | | | | |---|-----------------|----------------------|------------------------|-----------------------|-----------------|--------------------------------|------------------------------------|------------------------------------|-----------------------------|---------------------------------------|---------------------------------------|-------------------|-------------------------------|-----------------|------------------------------| | How to manage ⁷ | | Mow | Mow or Roll | Mow | SK o | Mow
WK (zone 6) or Mow | N,NR,B,P,W*,TS WK (zone 6) or Till | Mow
WK | Mow
WK | Mow
WK | Mow, Roll?
WK | Mow, WK | WK best; Mow? | Mow, Roll or WK | WK, Mow | | , Main
benefits ⁶ | | N, B, P, TS, W | B , N, NR, P, W | N, B, P, TS, W | B, W*, N, NR, P | N, B, P, TS, W | N,NR,B,P,W*,T | N, B, P, TS | N, P, B, SS | N, B, P, TS, W | N, B, P, SS, | N, B, TS | N, B, W, P, TS | W, N | N, W* | | Biomass,
tons/ac ⁵ | | 1-3 | 1.5-3 | 1.5-3 | 1.5-4 | 1.5-4 | 2-4 | 1-2.5 | | v 3-6 1.5-4 | 1-2.5 | 2-4.5 1.5-4 | v 2-5 1-3.5 | 2.5-4.5 | 1-2 | | Ht, | | v 3-5 | 7 | v 3-5 | 1-2 | v 3-5
pril | 2-3 | v 3-5
· WK | 7 | v 3-6 | 2-4
· WK | 2-4.5 | v 2-5 | 5-7 | v 5-10 1-2 | | Maturity ³ | | May | late April | May | late spring | early June
WK or late April | April-May | June-July v 3-5
55-70 DAP or WK | July?
WK | June
WK | June 22
60-70 DAP or WK | 50-75 DAP | 50-90 DAP | 90 DAP or V | > | | Seed inoculant When to plant ² | | early fall | late summer | pea/vetch late summer | late summer | early spring
late summer | mid-late summer | early spring
late summer | early spring
late summer | pea/vetch early spring
late summer | pea/vetch early spring
late summer | after frost | when soil $\ge 65^{\circ}$ F | after frost | when soil $\ge 65^{\circ}$ F | | Seed
inoculant | | ½-1½ pea/vetch early | clover | pea/vetch | clover | pea/vetch | clover | pea/vetch | lupine | pea/vetch | pea/vetch | soybean | cowpea | cowpea | lablab | | Depth,
in. | | 1/2-11/2 | 1/4-1/2 | 1-3 | 1/4-1/2 | 1/2-1 | 1/4-1/2 | 1-3 | | 1/2-1 | 1-3 | 1-2 | 3/4-11/2 | 1/2 -1 | 1-1 ½ lablab | | Seeding, Depth, lb/ac ¹ in. | | 20-40 | 15-30 | 70-120 | 10-30 | 20-60 | 8-20 | 10-20 70-120 | 15-20 70-120 3/4-1 | 30-80 | 80-150 1-3 | tender 60-120 1-2 | tender 50-100 3/4-11/2 cowpea | tender 3050 | tender 10-50 | | | :Se | -10 | r 0-10 | as 0-10 | 0-15 | 0-15 | r 5-20 | 10-20 | 15-20 | 20 | n 20 | tender | tender | tender | tender | | Crop Hardiness,
Species °F | Annual Legumes: | Hairy vetch | Crimson clover 0-10 | Aus. winter peas 0-10 | Subclovers | Lana vetch | Berseem clover 5-20 | Field peas | Lupine | Purple vetch | Bell / fava bean 20 | Soybean | Cowpeas | Sunnhemp | Lablab bean | | Cover | Ciop | 3 10 | | Seas | 0113. 1 | lumber | 5-00 | | | | | | | | | | | page | |---|---------------------|------------------------------|-----------------|-----------------|------------------------|-----------------------------|------------------|--------------|------------------|--------------|-----------------------------|--------------------------------|------------------------------|-------------------------------|--------------------|-----------------|------------------------------|------------------------------| | How to manage ⁷ | | Mow or Roll | Mow? | Mow? | Mow/Roll at milk stage | Till (WK zone 5-6) | Mow/Roll at milk | stage
WK | Mow/Roll at milk | stage
WK | Mow, Roll?
WK | S Mow
WK | Mow or Roll | WK best, Mow? or
Till | Mow or Roll | Mow, Roll or WK | Till or WK | Till or WK | | , Main
benefits ⁶ | | W*, NR, K, TS, B Mow or Roll | W, NR, K, TS | W, NR, K, TS | W*, NR, B, TS | W*, TS, K Till | W*, NR, B, TS | | W*, NR, TS, B | | W, NR, TS | SS, W*, NR,B,TS Mow WK | B, W*, P, TS | W*, SS, NR, B | W, NR, TS | W, NR, TS | W, NR, TS | W, NR, TS | | Biomass, Main
tons/ac ⁵ benef | | 2-5 | 1.5-3.5 | 2-4 | 1.5-5 | 2-3 | 1.5-4 | | 1.5-4 | | 1.5-3 | 1.5-3 | 1-1.5 | 3-6 | 1.5-3.5 | 3-5 | 2-4 | 3 | | Ht,
ft⁴ | | 4-6 | 3-4 | 3-5 | 2-3 | 8 | 2-3 | ⊻ | 8 | ⊻ | 8 | 1.5-3 | 2-3.5 | 7-9 | 3-4 | 8-9 | 4-6 | 8 | | Maturity ³ | | May | late May | late May | late April | Summer
Spring | early June | 60 DAP or WK | June | 70 DAP or WK | June-July
WK | June
Oct. or WK | n.30 DAP | 65-75 DAP | 60 DAP | 65-70 DAP | 50 DAP | 45 DAP | | When to plant ² | | fall | fall | fall | early fall | early spring
late summer | early spring | late summer | early spring | late summer | early spring
late summer | early spring
late summer | after frost –late sum.30 DAP | when soil $\geq 70^{\circ}$ F | after frost – June | June – August | after frost – June | after frost | | Seed
inoculant Wh | Depth,
in. | | 3/4-2 | 60-120 1/2-11/2 | 1/2-11/2 | 3/4-2 | 1/4-1/2 | 3/4-2 | | 1/2-2 | | 1/2 | 1/2 | 1/2-11/2 | 1/2-11/2 | 1/4-1/2 | 1/4-1/2 | 1/2-1 | 1/4-1/2 | | Seeding, Depth, Ib/ac ¹ in. | | 60-150 3/4-2 | 60-120 | 60-120 1/2-11/2 | 50-125 3/4-2 | 15-30 | 50-125 | | 15-20 80-140 | | 15-50 | 10-20 | tender 60-80 | 25-50 | tender 20-35 | tender 10-30 | 20-30 | 20-30 | | | gumes: | -40 | -25 | <-10 | 0 | 10-10 | 15 | | 15-20 | | 20 | , 20 | tender | ı tender | tender | tender | tender | et tender | | Crop Hardiness,
Species °F | Annual Non-Legumes: | Winter rye | Winter wheat | Triticale | Winter Barley | Ryegrass, ann. | Spring Barley | | Spring oats | | Black oats | Radish (daikon, oil or fodder) | Buckwheat | Sorghum-sudan tender | Foxtail millet | Pearl millet | Japanese millet tender 20-30 | Browntop millet tender 20-30 | | Cove | r Crop | os fo | r All | Seas | ons. | Nur | nber | 3-06 | |---|---------------------------|---|--|------------------------|------------------------|---------------------------------|------------------------|---------------------------------| | How to manage ⁷ | | Mow | Till | Till | Till | Till | Till | Till | | Biomass, Main
tons/ac ⁵ benefits ⁶ | | SS,P,N,B,W,NR Mow | N, P, SS, B, W | B, N, P | N, SS, B, W, NR | TS, W, K, B | TS, W, K, B | TS , NR, W, K, B | | | | 1.5-3 | | 5. | | | | | | Ht, | | 3-6 | 2-3 | 0.5-1.5 | 1.5-2 | 4-5 | 2-3.5 | 3-4 | | Maturity ³ | | late 2 nd spring | 2 nd season | | Seed inoculant When to plant ² Maturity ³ | | spring or late sum. late 2 nd spring 3-6 1.5-3 | spring or late sum. | spring or late sum. | spring or late sum. | spring or early fall 2nd season | spring or early fall | spring or early fall 2nd season | | Seed
inocular | | alfalfa | clover | 1/4-1/2 clover | alfalfa | | | | | Depth,
in. | | 1/4-1/2 | 1/4-1/2 | 1/4-1/2 | 1/4-1/2 | 1/4-1/2 | 1/4-1/2 | 1/4-1/2 | | Hardiness, Seeding, Depth, Seed oF Ib/ac in. inocu | als: | < 0 12-20 $\frac{1}{4}$ - $\frac{1}{2}$ alfalfa | < 0 10-15 $\frac{1}{4}$ - $\frac{1}{2}$ clover | 5-15 | 20-25 1/4-1/2 | 15-20 | 12-15 1/4-1/2 | 25-35 1/4-1/2 | | ness,
°F | erennia | 0 > | 0 > | 0 > | 1t<0 | 0 > | 0 > | 1.0 | | Crop Hardii
Species | Biennials and Perennials: | Sweetclover | Red clover | White clover | Alfalfa, dormant< 0 | Orchardgrass | Timothy | Ryegrass, peren. 0 | Lower rates for drilling, higher rates for broadcast seeding. For grass + legume biculture, sow grass at lower rates, legume at medium rates. ² after frost = spring frost-free date until midsummer; late summer = \sim 6-8 weeks before fall frost; ³ Full bloom or full head, days after planting (DAP), or month of full bloom in Appalachian region of Virginia. V = remains vegetative; WK winterkills. ⁴ At full bloom or full head. A "v" indicates crop is a vine; number gives typical vine length. Unsupported vines generally form mat 1-2 ft thick. including VA, NC, SC, KY, TN, GA, AL. Total biomass including roots + exudates is about 50% more. Biomass for grass + legume covers may ⁵ Estimated aboveground biomass for cover crop grown until full bloom, immature seed stage, or winterkill in Zones 6a-8b of southeastern US, exceed either one grown alone. soil potassium more available; W = suppresses weeds; SS = opens subsoil; TS = conditions/mellows topsoil. All cover crops add organic matter and ⁶ B = harbors beneficial insects; N = fixes nitrogen; NR = takes up and holds soluble soil N; P = makes soil phosphorus more available; K = makes protect soil from erosion. Boldface = particularly strong effect. W* indicates allelopathic effect - residues can inhibit emerging cash crop, effect subsides in a few weeks or over winter. ⁷ Till = requires tillage. Mow, Roll = mow or roll at or after full bloom for no-till; WK = allow to winterkill; SK = self seeds and dies in late spring, seeds germinate at end of summer. All cover crops can be managed by tilling in at any time before mature seed forms. Mow heavy top growth a