

Research & Education

Western SARE

Phil Rasmussen, Coordinator Utah State University Agricultural Science Building Room 305 4865 Old Main Hill Logan, Utah 84322-4865 phone: (435) 797-2257 fax: (435) 797-3344

Professional Development <u>Program</u>

Eastern Washington PDP Co-Coordinator

Andy McGuire Center for Sustaining Agriculture and Natural Resources (CSANR) Washington State University 35 C St NW, Courthouse Ephrata WA 98823 (509) 754-2011 ext. 413 (509) 754-0163 fax amcguire@wsu.edu

> Western Washington PDP Co-Coordinator

Carol Miles Associate Scientist/Extension Specialist Washington State University Mount Vernon NWREC 16650 State Route 536 Mount Vernon, WA 98273-4768 (360) 848-6150 <u>milesc@wsu.edu</u>

Western SARE Grant Categories

- Research & Education
- Professional Development
- Farmer/Rancher
- Professional + ProducerGraduate Student
- Graduate Student
 Sustainable Farm Tours
- Sustainable Faith Fours

Go to http://wsare.usu.edu Click on: Apply for a Grant

LIVESTOCK-CROP INTEGRATION

Introduction

Mixed crop-livestock farming systems—aka integrated crop-livestock systems consist of crops and livestock incorporated in spatially and/ or temporally overlapping ways on individual farms, or between nearby farms.

Basic Types

 Single-year alternation between harvested annual crop (usually grain) and grazed annual crop

Research & Education Grant

Title: No-Till Livestock-Grain Rotation for Diversified Farms

Project Number: SW06-066

Principal Investigator:

Lynne Carpenter-Boggs Coordinator CSANR BIOAg Johnson Hall 227 Pullman, WA 99164-6420 (509) 335-1553 Icboggs@wsu.edu http://csanr.wsu/BIOAg/

Co-Coordinators

Dave Huggins, Soil Scientist, USDA-ARS, Pullman Stephen Bramwell, Soils Graduate Research Asst.

Cooperators:

Melissa Lines, SkyLines Farm Joel Huesby, Thundering Hooves Farm Henning Sehmsdorf, S&S Homestead Farm Amy Bogaard, Hogsback Farm Dave & Becky Heilein, Arbutus Farm Dick Wittman, NW Direct Seed Assn.

Amount Funded: \$125,122

(s) on the same field

- Longer rotations of 3-12 or more years of perennial grasses, legumes, or mixes followed by an equal or lesser duration of annual crops (phase systems), and
- Grazing and resourcesharing collaborations between separate crop and livestock producers in close proximity (ex: stubble grazing)

Common Benefits of Integration

Efficient use of natural

resources

- Utilize natural pest control mechanisms
- Make use of 'waste' resources
- livestock manure
- crop residues

... continued on next page

Undercutting sweep Moldboard plow

T M	Triticale grain yield	Biomass	Alfalfa	Weed
		(g m-2)	crowns	Index
	(kg ha-2)	.0 /	(# m-2)	(0-5)
Plow	4200a	383a	5.5a	0.38a
Sweep	1630b	601b	8.25b	1.13b
Alfalfa	-	668c	11c	3.81c

Control alfalfa

Table 1. Triticale grain yield, aboveground biomass, surviving alfalfa crowns, and weed index July 12, 2007.

Western SARE, a USDA organization, funds grants for research and education that develop or promote some aspect of agricultural sustainability, which embraces

- profitable farms and ranches
- a healthy environment
- *strong families and communities.*

The Western Region, one of four SARE regions nationwide, is administered through Utah State University.

Western SARE: http://wsare.usu.edu

National SARE www.sare.org

LIVESTOCK-CROP INTEGRATION

 Improve soil quality and productivity

Disadvantages and Barriers to Integration

- Knowledge-intensive systems
- Changes in management and labor costs/ demands
- Infrastructure: watering systems, livestock processing
- Difficulty balancing yearround forage supplies
- Other wintering issues: compaction, livestock facilities/location
- Marketing costs
- Livestock less profitable
 than wheat some years
- Possible water depletion under deep-rooted perennials
- New, complicated N loss pathways
- New weeds, transfer of weeds

Trials at Thundering Hooves

Can conservation tillage be applied to perennial-annual transitions in mixed croplivestock systems?

What is the impact of till-

Table 2. Average annual variable costs, fixed costs and returns for three organic crop rotation options.

	Grazed alfalfa-		Hayed alfalfa-		Continuously	
	wheat rotation		wheat rotation		grazed alfalfa	
Revenue	\$	696.20	\$	1,448.20	\$	548.60
Seed	\$	13.99	\$	13.99	\$	5.50
Amendments	\$	-	\$	70.00	\$	-
Irrigation	\$	157.00	\$	160.30	\$	175.00
Labor	\$	71.29	\$	254.35	\$	92.18
Other:	\$	46.22	\$	225.64	\$	50.28
Overhead	\$	14.43	\$	36.21	\$	16.15
Operating Inter- est	\$	6.72	\$	16.88	\$	7.53
Ownership Costs	\$	218.61	\$	329.74	\$	162.24
Net return	\$	167.94	\$	341.08	\$	39.72

age on soil N?

Does more tillage mineralize more N?

What is most profitable, grazed alfalfa, a grazed alfalfa -wheat rotation, or a hayed alfalfa-wheat rotation?

Is N fixed by pasture sufficient to produce competitive grain yield?

Conclusions

Conservation tillage (sweeps): 61% yield

penalty

- More work needed for minimum-till pasture eradication
- Very little effect of tillage on nitrogen mineralization
- Grain yield after moldboard: 82% of County conventional avg
- Considerable reduction of inputs is possible
- Integrated more profitable than nonintegrated

Livestock integration promises significant economic and environmental benefits in the Palouse.