

Mixed crop-livestock farming systems for the inland Northwest U.S.

Stephen Bramwell¹, Lynne Carpenter-Boggs², David Huggins³, John Reganold¹, Kate Painter², and Joel Huesby⁴

Washington State University, Dept. Crop & Soil Sciences; WSU Center for Sustaining Agriculture and Natural Resources; USDA-ARS Soil Conservation and Land Management Unit; Thundering Hooves

Mixed crop-livestock farming systems—aka integrated crop-livestock systems—consist of crops and livestock incorporated in spatially and/or temporally overlapping ways on individual farms, or between nearby farms.

Basic Types:

- 1. Single-year alternation between harvested annual crop (usu. grain) and grazed annual crop(s) on the same field
- 2. Longer rotations of 3 to 12 or more years of perennial grasses, legumes, or mixes followed by an equal or lesser duration of annual crops (phase systems)
- Grazing and resource-sharing collaborations between separate crop and livestock producers in close proximity (ex: stubble grazing)

Common Benefits of Integration

- · Efficient use of natural resources
- Utilize natural pest control mechanisms
- · Make use of 'waste' resources
- o livestock manure
- o crop residues
- Improve soil quality and productivity

Disadvantages and Barriers to Integration

- Knowledge-intensive systems
- Changes in management and labor costs/demands
- Infrastructure: watering systems, livestock processing
- Difficulty balancing year-round forage supplies
- Other wintering issues: compaction, livestock facilities/location
- Marketing costs
- Livestock less profitable than wheat some years
- Possible water depletion under deep-rooted perennials
- New, complicated N loss pathways
- · New weeds, transfer of weeds

Trials at Thundering Hooves

- 1. Can conservation tillage be applied to perennial-annual transitions in mixed crop-livestock systems?
- 2. What is the impact of tillage on soil N:

 Does more tillage mineralize more N?
- 3. What is most profitable: grazed alfalfa, a grazed alfalfawheat rotation, or a hayed alfalfa-wheat rotation?
- 4. Is N fixed by pasture sufficient to produce competitive grain yield?

Undercutting Moldboard Control Sweep Plow Alfalfa

Table 1. Triticale grain yield, aboveground biomass, surviving alfalfa crowns, and weed index July 12, 2007.

/ d)	Triticale grain yield (kg ha ⁻²)	Biomass (g m ⁻²)	Alfalfa crowns (# m ⁻²)	Weed Index (0-5)
Plow	4200a	383ª	5.5a	0.38a
Sweep	1630 ^b	601 ^b	8.25 ^b	1.13 ^b
Alfalfa	11-86	668°	11°	3.81°

Table 2. Average annual variable costs, fixed costs and returns for three organic crop rotation options.

	 ed alfalfa- at rotation	Hayed alfalfa- wheat rotation		Continuously grazed alfalfa	
Revenue	\$ 696.20	\$	1,448.20	\$	548.60
Seed	\$ 13.99	\$	13.99	\$	5.50
Amendments	\$ 100	\$	70.00	\$	
Irrigation	\$ 157.00	\$	160.30	\$	175.00
Labor	\$ 71.29	\$	254.35	\$	92.18
Other:	\$ 46.22	\$	225.64	\$	50.28
Overhead	\$ 14.43	\$	36.21	\$	16.15
Operating Interest	\$ 6.72	\$	16.88	\$	7.53
Ownership Costs	\$ 218.61	\$	329.74	\$ -	162.24
Net Return	\$ 167.94	\$	341.08	\$	39.72

Table 3. Effect of price variation for alfalfa, wheat and beef on net returns for three organic crop rotation options

Base prices	Alfalfa	\$200 ton-1	Whe	eat \$15 bu-1	Bee	ef: \$1 lb ⁻¹
Alfalfa price sensitivity	\$150		\$200		\$250	
GGR	\$	167.94	\$	167.94	\$	167.94
HGR	\$	57.78	\$	341.08	\$	624.38
CG	\$	39.72	\$	39.72	\$	39.72
Wheat price sensitivity	\$11.25		\$15		\$18.75	
GGR	\$	89.19	\$	167.94	\$	246.69
HGR	\$	262.33	\$	341.08	\$	419.83
CG	\$	39.72	\$	39.72	\$	39.72
Beef price sensitivity	\$0.75		\$1.00		\$2.00	
GGR	\$	156.34	\$	167.94	\$	214.34
HGR	\$	341.08	\$	341.08	\$	341.08
CG	\$	(97.43)	\$	39.72	\$	588.32

CONCLUSIONS

- Conservation tillage (sweeps): 61% yield penalty
- More work needed for minimum-till pasture eradication
- Very little effect of tillage on nitrogen mineralization
- Grain yield after moldboard: 82% of County conventional average
- Considerable reduction of inputs is possible
- Integrated more profitable than non-integrated
- Livestock integration promises to provide significant economic and environmental benefits in the Palouse